Publicación: Caracterización molecular con marcadores ISSR de la colección de cítricos de la Universidad de los Llanos
dc.contributor.author | Castañeda-Cardona, Christian Camilo | |
dc.contributor.author | Portela-Puerta, Rogelio | |
dc.contributor.author | Morillo-Coronado, Yacenia | |
dc.date.accessioned | 2023-12-11T21:38:55Z | |
dc.date.available | 2023-12-11T21:38:55Z | |
dc.date.issued | 2021 | |
dc.description | Incluye tablas y figuras. | spa |
dc.description.abstract | Contextualización: los cítricos son una de las especies arbóreas más cultivadas en todo el mundo. Poseen una gran importancia económica por su producción es mayor a cualquier otro frutal. Vacío de conocimiento: pese a la gran demanda de cítricos en Colombia, se conoce muy poco acerca del origen y la diversidad genética. Asimismo, no se han realizado estudios de caracterización molecular de las variedades de cítricos de la colección de la Universidad de los Llanos, los cuales son importantes para implementar estrategias de conservación y uso potencial de los recursos genéticos. Propósito del estudio: evaluar la diversidad genética de cuatro variedades de cítricos (Naranja Tangelo, Naranja Valencia, Mandarina Arrayana y Limón Castilla), establecidas en la Universidad de los Llanos con siete cebadores ISSR. Metodología: la caracterización molecular se realizó en los laboratorios de Biotecnología Vegetal y Genética y Reproducción Animal de la Universidad de los Llanos. Se generó una matriz binaria de ausencia y presencia. La similitud genética entre los individuos se calculó utilizando el coeficiente de similitud de Nei y Li (1979). El análisis clúster se realizó por el método UPGMA y se generó un dendrograma utilizando el paquete estadístico NTSYS, versión 2.02 PC. Se estimó la heterocigosidad insesgada, el porcentaje de loci polimórficos y el f estadístico insesgado con un intervalo de confianza del 95%, utilizando el paquete estadístico TFPGA, versión 1.3. Resultados y conclusiones: se obtuvo un total de 80 bandas, de las cuales el 86.25% fueron polimórficas. La heterocigosidad estimada promedio para la población total fue de 0,29, que evidencia una moderada diversidad genética. Los cebadores CGA y AG fueron los de mayor aporte a la estimación del polimorfismo genético. Se encontró poca diferenciación genética (Fst = 0,03). A un nivel de similitud de 0.42 se formaron siete grupos, siendo los grupos 1 y 2 los que agruparon la mayor cantidad de genotipos de las cuatro especies, siendo en su mayoría de mandarina Arrayana y de naranja Tangelo. Los siete cebadores fueron significativos para la estimación de la diversidad genética en cítricos y constituyen una herramienta con gran potencial para posteriores trabajos de mejoramiento en esta especie. | spa |
dc.description.abstract | Contextualization: Citrus trees are one of the most cultivated tree species in the world. They are of great importance since their production is greater than that of any other fruit tree. Knowledge gap: Despite the great demand for citrus fruits in Colombia, there is limited knowledge about the origin and genetic diversity. Likewise, molecular characterization studies of citrus varieties established in the work collection of the Universidad de los Llanos have not been carried out, which is of vital importance to implement conservation strategies and potential use of genetic resources. Purpose: to evaluate the genetic diversity of four citrus varieties (Tangelo orange, Valencia orange, Arrayana mandarin and Castilla lemon), established at the University of the Llanos with seven ISSR primers. Methodology: The molecular characterization was carried out in the Plant Biotechnology and Animal Reproduction and Genetics laboratories of the Universidad de los Llanos Universidad de los Llanos. A binary matrix of absence and presence was generated. The genetic similarity between the individuals was calculated using the coefficient of similarity of Nei and Li (1979). The cluster analysis was performed by the UPGMA method and a dendrogram was generated using the NTSYS statistical package, version 2.02 pc. The unbiased heterozygosity, the percentage of polymorphic loci, and the unbiased f statistic were estimated with a 95% confidence interval, using the TFPGA statistical package, version 1.3. Results and conclusions: A total of 80 bands were obtained, of which 86.25% were polymorphic. The average estimated heterozygosity for the total population was 0.29, which shows a moderate genetic diversity. The CGA and AG primers were the ones with the greatest contribution to the estimation of genetic polymorphism. Little genetic differentiation was found (Fst = 0.03). At a level of similarity of 0.42, seven groups were formed, with groups 1 and 2 being the ones that grouped the largest number of genotypes of the four species, being mostly Arrayana mandarin and Tangelo orange. The seven primers were significant for the estimation of genetic diversity in citrus fruits and constitute a tool with great potential for further improvement work in this species. | eng |
dc.format.extent | 18 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Castañeda-Cardona, C., Portela-Puerta, R., y Morillo-Coronado, Y. (2021). Caracterización molecular con marcadores ISSR de la colección de cítricos de la Univerisdad de los Llanos. Revista de Investigación Agraria y Ambiental, 12(2), 67 – 84. DOI: https://doi.org/10.22490/21456453.3884 | spa |
dc.identifier.eissn | 2145-6453 | spa |
dc.identifier.instname | Universidad de los Llanos | spa |
dc.identifier.issn | 2145-6097 | spa |
dc.identifier.reponame | Repositorio digital Universidad de los Llanos | spa |
dc.identifier.repourl | https://repositorio.unillanos.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unillanos.edu.co/handle/001/3300 | |
dc.identifier.url | https://hemeroteca.unad.edu.co/index.php/riaa/article/view/3884 | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional Abierta y a Distancia | spa |
dc.publisher.place | Villavicencio | spa |
dc.relation.citationendpage | 84 | spa |
dc.relation.citationissue | Núm. 2 | spa |
dc.relation.citationstartpage | 67 | spa |
dc.relation.citationvolume | Vol. 12 | spa |
dc.relation.ispartofjournal | Revista de Investigación Agraria y Ambiental | spa |
dc.relation.references | Anderson, C. M., Ban�, G., Beñatena, H., Casafus, C. M., Costa, N. B., Danos, E., Fabiani, A., Garran, S. M., Larocca, L., Marco, G., Messina, M., Mika, R., Mousques, J., Plata, M. I., Ragone, M., Rivas, R., Vaccaro, N. C., y Vazquez, Daniel. (1996). Manual para productores de naranja y mandarina INTA, & R. M. Anahí Fabiani (Ed.), Manual para productores de naranja y mandarina de la región del rio Uruguay (págs. 1-6). Argentina: Secretaría de Agricultura, Pesca y Alimentación. Recuperado el 15 de abril de 2020, de https://inta.gob.ar/sites/default/�es/script-tmpinta_manual_citricultura_cap1.pdf | spa |
dc.relation.references | Barkley, N.A., Roose, M.L., Krueger, R.R., y Federici, C.T. (2006). Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theoretical and Applied Genetics, 112(8): 1519-1531. Doi: 10.1007/s00122-006-0255-9 D | spa |
dc.relation.references | Barrett, H.C., y Rhodes, A.M. (1976). A numerical taxonomic study of af�nity relationships in cultivated Citrus and its close relatives. Systematic Botany, 1, 105-136. https://doi. org/10.2307/2418763 | spa |
dc.relation.references | Bausher, M.G., Singh, N.D., Lee, S.B., Jansen, R.K., y Daniell H. (2006). The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var ‘Ridge Pineapple’: organization and phylogenetic relationships to other angiosperms. BMC Plant Biology, 6, 21. https://doi.org/10.1186/14712229-6-21 | spa |
dc.relation.references | Bermúdez-Guzmán, M., Guzmán-Rodríguez, L., García-Mariscal, K., Palmeros-Suárez, P., y OrozcoSantos, M. (2017). Identi�cación de híbridos de Citrus aurantifolia×Citrus limon utilizando marcadores de secuencias simples repetidas (SSR). Revista Mexicana de Ciencias Agrícolas, 8(6): 13971408. Recuperado de: http://www.scielo.org. mx/scielo.php?script=sci_arttext&pid=S200709342017000601397&lng=pt&nrm=iso | spa |
dc.relation.references | Carbonell-Caballero, J., Alonso, R., Ibañez, V., Terol, J., Talon, M., y Dopazo, J. (2015). A phylogenetic analysis of 34 chloroplast genomes elucidates the relationships between wild and domestic species within the genus Citrus. Mo- lecular Biology and Evolution, 32(8): 2015-2035. Doi: 10.1093/molbev/msv082 | spa |
dc.relation.references | Carrillo-Medrano, S., Gutierrez-Espinosa, M., Robles M., y Izquierdo, S. (2018). Identifcación de hí- bridos de limón mexicano mediante marcadores moleculares SSR. Revista Mexicana de Ciencias Agrícolas. 9. 11. https://doi.org/10.29312/remexca.v9i1.844 | spa |
dc.relation.references | Castañeda-Cardona, C. C., Morillo-Coronado, Y., y Morillo, A. C. (2020). ssessing the genetic diversity of Dioscorea alata and related species from Colombia through inter-simple sequence repeat (ISSR) markers. Chilean Journal of Agricultural Research,80(4):608-616. http://dx.doi. org/10.4067/S0718-58392020000400608 | spa |
dc.relation.references | Curk, F., F. Ollitrault, A. Garcia-Lor, F. Luro, L. Navarro, y P. Ollitrault. (2016). Phylogenetic origin of limes and lemons revealed by cytoplasmic and nuclear markers. Annals of Botany. 117(4): 565–583. https://doi.org/10.1093/aob/mcw005 | spa |
dc.relation.references | Dorji, K., y Yapwattanaphun, C. (2015). Assessment of the genetic variability amongst mandarin (citrus reticulata blanco) accessions in bhutan using AFLP markers. BMC Genetics, 16(1):39-48. https://doi.org/10.1186/s12863-015-0198-8 | spa |
dc.relation.references | Doyle, J. – Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. In Focus, 12(1): 13–15. JJ Doyle, JL Doyle - Focus, 1990 - researchgate.net | spa |
dc.relation.references | Fanciullino, A.L., Dhuique-Mayer, C., Luro, F., Casanova, J., Morillon, R., y llitrault, P. (2006). Carotenoid diversity in cultivated citrus is highly in�uenced by genetic factors. Journal of Agricultural and Food Chemistry, 54: 4397-4406. https://doi.org/10.1021/jf0526644 | spa |
dc.relation.references | Food and Agriculture Organization. (2020). Comisión de recursos genéticos para la alimentación y la agricultura: Recursos �togenéticos. Recuperado de: http://www.fao.org/cgrfa/topics/plants/es/ | spa |
dc.relation.references | Food and Agriculture Organization Statistical. (2017). Citrus fruit fresh and processed statistical bulletin 2016. Recuperado de: http://www.fao.org/3/a-i8092e.pdf | spa |
dc.relation.references | Federici, C.T., Fang, D.Q., Scora, R.W., y Roose, M.L. (1998). Phylogenetic relationships within the genus Citrus (Rutaceae) and related genera as revealed by RFLP and RAPD analysis. Theoretical and Applied Genetics, 96: 812-822. Recuperado de: https://link.springer.com/article/10.1007/s001220050807 | spa |
dc.relation.references | Froelicher, Y., Mouhaya, W., Bassene, JB., Costantino, G., Kamiri, M., Luro, F., Morillon, R., y Ollitrault, P. (2011). New universal mitochondrial PCR markers reveal new information on maternal citrus phylogeny. Tree Genetics and Genomes, 7: 49-61. https://doi.org/10.1007/s11295-010-0314-x | spa |
dc.relation.references | Fujii, H., Ohta, S., Nonaka, K., Katayose, Y., Matsumoto, T., Endo, T., Yoshioka, T., Omura, M., y Shimada, T. (2016). Parental diagnosis of satsuma mandarin (Citrus unshiu marc.) revealed by nuclear and cytoplasmic markers. Breeding Science, 66(5): 683–691. https://doi.org/10.1270/jsbbs.16060 | spa |
dc.relation.references | García, A. (2013). Organización de la diversidad genética de los cítricos. Universitat Politècnica de València: Departamento de biotecnología. Valencia: España. Tesis doctoral, 1(1), 18. Recuperado de https://riunet.upv.es/bitstream/handle/10251/31518/Versi%C3%B3n3.Tesis%20Andr%C3%A9s%20Garc%C3%ADa-Lor.pdf | spa |
dc.relation.references | Garcia-Lor, A., Luro, F., Navarro, L., y Ollitrault, P. (2012). Comparative use of InDel and SSR markers in deciphering the interspecific structure of cultivated citrus genetic diversity: a perspective for genetic association studies. Molecular Genetics and Genomics, 28: 77-94. https://doi.org/10.1007/s00438-011-0658-4 | spa |
dc.relation.references | Garcia-Lor, A., Luro, F., Ollitrault, P. & Navarro, L. (2015). Genetic diversity and population structure analysis of mandarin germplasm by nuclear, chloroplastic and mitochondrial markers. Tree Genetics & Genomes 11(6):1-15. https://doi.org/10.1007/s11295-015-0951-1 | spa |
dc.relation.references | Gulsen O, Roose ML. (2001). Chloroplast and nuclear genome analysis of the parentage of lemons. Journal of the American Society for Horticultural Science, 126: 210-215. https://doi.org/10.21273/JASHS.126.2.210 | spa |
dc.relation.references | Henareh, M., Dursun, A., Abdollahi-Mandoulakani, B., y Haliloğlu, K. (2016). Assessment of genetic diversity in tomato landraces using ISSR markers. Genetika, 48: 25-35. https://doi.org/10.2298/GENSR1601025H | spa |
dc.relation.references | Ibañez, V., García Usach, A., Carbonell Caballero, J., Alonso, R., Terol, J., Dopazo, J., y Talón, M. (2015). El origen de las especies cultivadas de cítricos. Levante Agrícola: Revista internacional de cítricos, 426, 74-79. Recuperado de: https://dialnet.unirioja.es/servlet/articulo?codigo=5145911 | spa |
dc.relation.references | Joseph, H. A. R. T. R. B. W., (1992). Multivariate data. 3 Ed. s.l.: Analysis with Readings. Kumar, S., Narayan, S., Narayanan, J., y Nair K. (2010). ISSR polymorphism in Indian wild orange (Citrus indica Tanaka, Rutaceae) and related wild species in North-east India. Scientia Horticulturae, 123(3): 350–359. https://doi.org/10.1016/j.scienta.2009.10.008 | spa |
dc.relation.references | Luro, F., G.Constantino,J. Terol, X. Argout, T. Allario , Wincker P., M. Talon , Ollitrault, P., y Morillon R. (2008). Transferability of the EST-SSRs developed on Nules clementine (Citrus clementina Hort ex Tan) to other citrus species and their effectiveness for genetic mapping. BMC Genomics 9, 287. https://doi.org/10.1186/1471-2164-9-287 | spa |
dc.relation.references | Martínez, M. F. (2013). Caracterización molecular de genotipos de mandarinas Citrus spp. mediante marcadores RAM´s (Microsatélites Amplificados al Azar) y Microsatélites. Tesis de Maestría. Universidad Nacional de Colombia Sede Palmira, 141 págs. Recuperado de http://bdigital.unal.edu.co/12773/1/7609502.2013.pdf | spa |
dc.relation.references | Martínez, M. A., Morillo, A. C., y Reyes-Ardila, W. (2020). Characterization of the genetic diversity in Passiflora spp. in the Boyacá Department, Colombia. Chilean Journal of Agricultural Research, 80(3): 342-351. http://dx.doi.org/10.4067/S0718-58392020000300342 | spa |
dc.relation.references | Ministerio de Agricultura y Desarrollo Rural. (2019). Agronet. Recuperado el 15 de abril de 2020, de Agronet: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1 | spa |
dc.relation.references | Morillo, A.C., Morillo, Y., Chagüeza, Y., Caicedo, A., y Muñoz, J.E. (2009). Caracterización de la diversidad genética en naranja y comparación del polimorfismo de microsatélites amplificados al azar (RAM’s) usando electroforesis de poliacrilamida y agarosa. Acta Agronómica, 58(4): 234-244. Recuperado de: http://www.scielo.org.co/scielo.php?pid=S0120-28122009000400002&script=sci_abstract&tlng=es | spa |
dc.relation.references | Morillo, A.C., González, J., y Morillo, Y. (2018). Caracterización de la diversidad genética de uchuva (Physalis peruviana L.). Biotecnología en el Sector Agropecuario y Agroindustrial, 16, 26-33. Doi: 10.18684/bsaa.v16n1.631 | spa |
dc.relation.references | Munankarmi, N.M.; Shrestha, R.L.; Rana, N.; Shrestha, J.K.C.; Shrestha, S.; Koirala, R.; Shrestha, S. (2014). Genetic diversity assessment of Acid lime (Citrus aurantifolia, Swingle) landraces of Nepal using RAPD markers. International Journal of Applied Sciences and Biotechnology, 2(3): 315-327. https://doi.org/10.3126/ijasbt.v2i3.10950 | spa |
dc.relation.references | Munankarmi, Nabin., Rana, Neesha., Bhattarai, Tribikram., Shrestha, Ra., Joshi, Bal., Baral, Bikash y Shrestha, Sangita. (2018). Characterization of the Genetic Diversity of Acid Lime (Citrus aurantifolia (Christm.) Swingle) Cultivars of Eastern Nepal Using Inter-Simple Sequence Repeat Markers. Plants, 7, 46. https://doi.org/10.3390/plants7020046 | spa |
dc.relation.references | Nei, M., y Li, W.H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleasa. Procedings of the National Academic of Sciences of United states of America, 79, 5267-5273. Doi: 10.1073/pnas.76.10.5269 | spa |
dc.relation.references | Nicolosi, E., Deng, Zn., Gentile, A., La Malfa, S., Continella, G., y Tribulato, E. (2000). Citrus phylogeny and genetic origin of important species as investigated by molecular markers", Theoretical and Applied Genetics, 100(8): 1155-1166. Doi: 10.1007/s001220051419 | spa |
dc.relation.references | Nicolosi, E. (2007). "Origin and taxonomy" in, Citrus Genetics Breeding and Biotechnology Chapter 3. Ed. I. Ahmad Khan. 19-43. Doi: 10.1079/9780851990194.0000 | spa |
dc.relation.references | Ninomiya, T., Shimada, T., Endo, T., Nonaka, K., Omura, M., y Fujii, H. (2015). Development of citrus cultivar identification by caps markers and parentage analysis. Horticultural Research. (Japan), 14: 127–133. Doi: 10.2503/hrj.14.127 | spa |
dc.relation.references | Nonaka, K., Fujii, H., Kita, M., Shimada, T., Endo, T., Yoshioka, T., y Omura, M. (2017). Identification and parentage analysis of citrus cultivars developed in japan by caps markers. The Horticulture Journal, 86(2): 208–221. https://doi.org/10.2503/hortj.OKD-026 | spa |
dc.relation.references | Ollitrault, F., Terol, J., Martin, A., Pina, J.A., Navarro, L., Talon, M., y Ollitrault, P. (2012). Development of InDel markers from Citrus clementina (Rutaceae) BAC-end sequences and interspecific transferability in Citrus. American Journal of Botany, 99: 268-273. Doi: 10.3732/ajb.1100569 | spa |
dc.relation.references | Ollitrault, F., Terol, J., Pina, J.A., Navarro, L., Talon, M., y Ollitrault, P. (2010). Development of SSR markers from Citrus clementina (Rutaceae) BAC end sequences and interspecific transferability in Citrus. American Journal of Botany, 97, e124-9. Doi: 10.3732/ajb.1000280 | spa |
dc.relation.references | Ollitrault, P., Jacquemond, C., Dubois, C., y Luro, F. (2003). Citrus. In: Hannon P, Seguin M, Perrier X, Glaszmann JC (eds). Genetic diversity of cultivated tropical plants. Montpellier/Enfield, NH: CIRAD/Science Publishers, Inc., 193-217 | spa |
dc.relation.references | Ollitrault, P., Terol, J., Garcia-Lor, A. et al. (2012). SNP mining in C. clementina BAC end sequences; transferability in the Citrus genus (Rutaceae), phylogenetic inferences and perspectives for genetic mapping. BMC Genomics, 13(13). https://doi.org/10.1186/1471-2164-13-13 | spa |
dc.relation.references | Peakall, R., y Smouse, P. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28(19), 2537-2539. doi: 10.1093/bioinformatics/bts460 | spa |
dc.relation.references | Orduz, J., y Mateus, D. (2012). Generalidades de los cítricos y recomendaciones agronómicas para su cultivo en Colombia. cap 2. Pp. 49-88. Recuperado de: http://hdl.handle.net/10567/561 | spa |
dc.relation.references | Roose, M., Federici, C., Mu, L., Kwok, K., y Vu, C. (2009). Map-based ancestry of sweet orange and other citrus variety groups. In: Gentile A, Tribulato E. (eds.) Second International Citrus Biotechnology Symposium. Catania, Italy, 28. Doi: 10.1007/s001220051419 | spa |
dc.relation.references | Sánchez de Prager, M., Perea Morera, E., Prager Mosquera, M., Ángel Sánchez, D., Ortiz Ríos, J.C., Gallego, J.M. y Sanclemente Reyes, O.E. (2020). Capítulo 2. Biodiversidad del suelo. Su importancia para el manejo sustentable de agroecosistemas. En S. Sarandón (Ed.). Biodiversidad, agroecología y agricultura sustentable. La Plata, Argentina. ISBN: 978-950-34-1948-9. Editorial de la Universidad Nacional de La Plata (EDULP). Pp 37- 51. http://sedici.unlp.edu.ar/handle/10915/109141 | spa |
dc.relation.references | Scarano, M., Tusa, N., Abbate, L., Lucretti, S., Nardi, L., y Ferrante, S. (2003). Flow cytometry, SSR and modified AFLP markers for the identification of zygotic plantlets in backcrosses between ‘Femminello’ lemon cybrids (2n and 4n) and a diploid clone of ‘Femminello’ lemon (Citrus limon L. Burm. F.) tolerant to mal secco disease. Plant Science, 164: 1009-1017. https://doi.org/10.1016/S0168-9452(03)00088-8 | spa |
dc.relation.references | Scora RW. (1975). On the history and origin of citrus. Bulletin of the Torrey Botanical Club, 102, 369-375. https://doi.org/10.2307/2484763 | spa |
dc.relation.references | Shahsavary, A., Izadpanah, K., Tafazoli, E., y Tabatabaei, B. S. (2007). Characterization of citrus germplasm including unknown variants by inter-simple sequence repeat (ISSR) markers. Scientia Horticulturae, 112(3), 310–314. Doi: https://doi.org/10.1016/j.scienta.2006.12.039 | spa |
dc.relation.references | Shahzadi, K., Naz, S., y Ilyas, S. (2016). Genetic diversity of citrus germplasm in Pakistan based on random amplified polymorphic DNA (RAPD) markers. In Journal of Animal and Plant Sciences, (26), 1094–1100. Recuperado de: http://www.thejaps.org.pk/docs/v-26-04/27.pdf | spa |
dc.relation.references | Sharafi, A., Asadi, A., y Sharafi, Ali. (2017). Molecular genetic diversity assessment of Citrus species grown in Iran revealed by SSR, ISSR and CAPS molecular markers. Journal of Science and Research, 2(8): 22-27. https://doi.org/10.26910/issn.2528-8083vol2iss8.2017pp22-27 | spa |
dc.relation.references | Singh, P.K. H., Sharam, N., Srivastava., y Bhagyawant, S. (2014). Analysis of genetic diversity among wild and cultivated chickpea genotypes employing ISSR and RAPD markers. American Journal of Plant Sciences, 5: 676-682. https://doi.org/10.4236/ajps.2014.55082 | spa |
dc.relation.references | Valencia, R., Lobo, M., y Ligarreto, G. (2010). Estado del arte de los recursos genéticos vegetales en Colombia: Sistema de Bancos de Germoplasma. Agrobiodiversidad, Corpoica Cienc. Tecnol. Agropecu, 11(1): 85-94. Recuperado de http://revista.corpoica.org.co/index.php/revista/article/view/198/203 | spa |
dc.relation.references | Vargas, J. E. E., Aguirre, N. C., y Coronado, Y. M. (2020). Study of the genetic diversity of tomato (Solanum spp.) with ISSR markers. Revista Ceres, 67(3): 199-206. Doi: https://doi.org/10.1590/0034-737x202067030005 | spa |
dc.relation.references | Varshney, R.K., Graner, A., y Sorrells, M.E. (2005). Genetic microsatellite markers in plants: Features and applications. Trends in Biotechnology. 23, 48–55. Doi: https://doi.org/10.1016/j.tibtech.2004.11.005 | spa |
dc.relation.references | Webber, H. J. (1943). Plant characteristics and climatology. En: H.J. Webber y L.D. Batchelor, dirs. The Citrus Industry. Berkeley: University of California. Press. 1:41-69. | spa |
dc.relation.references | Wright, S. (1978). Evolution and the genetics of populations. Variability within and among natural populations, Vol. 4. 590. | spa |
dc.relation.references | Wu, G., Terol, J., Ibanez, V. (2018). Genomics of the origin and evolution of Citrus. Nature 554: 311-316. https://doi.org/10.1038/nature25447 | spa |
dc.relation.references | Xu, Q., Chen, L., y Ruan, X. (2013). The draft genome of sweet orange (Citrus sinensis). Nature genetics 45: 59-66. https://doi.org/10.1038/ng.2472 | spa |
dc.relation.references | Yamamoto, M., Tsuchimochi, Y., Nonaka, T., Koga, T., Kitajima, A., Yamasaki, A., Inafuku-Teramoto, S., Yang, X., Yang, X., y Zhong, G. (2013). Diversity of chloroplast DNA in various mandarins (Citrus spp.) and other citrus demonstrated by CAPS analysis. Journal of the Japanese Society for Horticultural Science, 82(2):106–113. https://doi.org/10.2503/jjshs1.82.106 | spa |
dc.relation.references | Yang, Y., YueZhi, P., Xun, G., y MouTian, F. (2010). Genetic variation in the endangered Rutaceae species Citrus hongheensis based on ISSR fingerprinting. Genetic Resources and Crop Evolution 57: 1239-1248. https://doi.org/10.1007/s10722-010-9571-7 | spa |
dc.relation.references | Yu, Y., Chen, C., Huang, M., Yu, Q., Du, D., Mattia, M. R., y Gmitter, F. G. (2018). Genetic Diversity and Population Structure Analysis of Citrus Germplasm with Single Nucleotide Polymorphism Markers. Journal of the American Society for Horticultural Science. 143(6), 399-408. https://doi.org/10.21273/JASHS04394-18 | spa |
dc.relation.references | Zietkiewicz E, Rafalski A., y Labuda D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–18. https://doi.org/10.1006/geno.1994.1151 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.source | https://hemeroteca.unad.edu.co/index.php/riaa/article/view/3884 | spa |
dc.subject.proposal | Citrus | spa |
dc.subject.proposal | Diferenciación genética | spa |
dc.subject.proposal | Germoplasma | spa |
dc.subject.proposal | Microsatélites | spa |
dc.subject.proposal | Variabilidad Genética | spa |
dc.subject.proposal | Citrus | eng |
dc.subject.proposal | Genetic Differentiation | eng |
dc.subject.proposal | Germplasm | eng |
dc.subject.proposal | Microsatellite | eng |
dc.subject.proposal | Genetic Variability | eng |
dc.title | Caracterización molecular con marcadores ISSR de la colección de cítricos de la Universidad de los Llanos | spa |
dc.type | Artículo de revista | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
Cargando...

- Nombre:
- license.txt
- Tamaño:
- 14.43 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: