Persona: Jiménez López, Andrés Fernando
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Docente
Apellidos
Jiménez López
Nombre de pila
Andrés Fernando
Dirección de correo electrónico
ORCID
0000-0001-8308-7815
Google Scholar
Grupo de investigación
2 resultados
Resultados de la búsqueda
Mostrando 1 - 2 de 2
Publicación Sólo datos Clasificación y mapeo automático de coberturas del suelo en imágenes satelitales utilizando Redes Neuronales Convolucionales(Universidad de los Llanos, 2017-07-16) Suárez Londoño, Arnol Sneider; Castro Franco, Mauricio; Cruz Roa, Angel Alfonso; Jiménez López, Andrés FernandoLa clasificación de cobertura del suelo es importante para estudios de cambio climático y monitoreo de servicios ecosistémicos. Los métodos convencionales de clasificación de coberturas se realizan mediante la interpretación visual de imágenes satelitales, lo cual es costoso, dispendioso e impreciso. Implementar métodos computacionales permite generar clasificación de coberturas en imágenes satelitales de manera automática, rápida, precisa y económica. Particularmente, los métodos de aprendizaje automático son técnicas computacionales promisorias para la estimación de cambios de cobertura del suelo. En este trabajo se presenta un método de aprendizaje automático basado en redes neuronales convolucionales de arquitectura tipo ConvNet para la clasificación automática de coberturas del suelo a partir de imágenes Landsat 5 TM. La ConvNet fue entrenada a partir de las anotaciones manuales por medio de interpretación visual sobre las imágenes satelitales con las que los expertos generaron el mapa de cobertura del parque nacional el Tuparro, de los Parques Nacionales Naturales de Colombia. El modelo de validación se realizó con datos de los mapas de coberturas del Amazonas colombiano realizado por el Sistema de Información Ambiental de Colombia. Los resultados obtenidos de la diagonal de la matriz de confusión de la exactitud promedio fue de 83.27% en entrenamiento y 91.02% en validación; para la clasificación en parches entre Bosques, áreas con vegetación herbácea y/o arbustiva, áreas abiertas sin o con poca vegetación y aguas continentales.Publicación Sólo datos Clasificación y mapeo automático de coberturas del suelo en imágenes satelitales utilizando Redes Neuronales Convolucionales(Universidad de los Llanos, 2017-07-16) Suárez Londoño, Arnol Sneider; Castro Franco, Mauricio; Cruz Roa, Angel Alfonso; Jiménez López, Andrés FernandoLa clasificación de cobertura del suelo es importante para estudios de cambio climático y monitoreo de servicios ecosistémicos. Los métodos convencionales de clasificación de coberturas se realizan mediante la interpretación visual de imágenes satelitales, lo cual es costoso, dispendioso e impreciso. Implementar métodos computacionales permite generar clasificación de coberturas en imágenes satelitales de manera automática, rápida, precisa y económica. Particularmente, los métodos de aprendizaje automático son técnicas computacionales promisorias para la estimación de cambios de cobertura del suelo. En este trabajo se presenta un método de aprendizaje automático basado en redes neuronales convolucionales de arquitectura tipo ConvNet para la clasificación automática de coberturas del suelo a partir de imágenes Landsat 5 TM. La ConvNet fue entrenada a partir de las anotaciones manuales por medio de interpretación visual sobre las imágenes satelitales con las que los expertos generaron el mapa de cobertura del parque nacional el Tuparro, de los Parques Nacionales Naturales de Colombia. El modelo de validación se realizó con datos de los mapas de coberturas del Amazonas colombiano realizado por el Sistema de Información Ambiental de Colombia. Los resultados obtenidos de la diagonal de la matriz de confusión de la exactitud promedio fue de 83.27% en entrenamiento y 91.02% en validación; para la clasificación en parches entre Bosques, áreas con vegetación herbácea y/o arbustiva, áreas abiertas sin o con poca vegetación y aguas continentales.