Publicación:
¿Qué sabemos de los esteroides sexuales y las gonadotropinas en la reproducción de teleósteos neotropicales?

dc.contributor.authorNieto-Vera, Mónica T.spa
dc.contributor.authorRodríguez-Pulido, José A.spa
dc.contributor.authorGóngora-Orjuela, Agustínspa
dc.date.accessioned2020-05-11 00:00:00
dc.date.accessioned2022-06-13T17:42:40Z
dc.date.available2020-05-11 00:00:00
dc.date.available2022-06-13T17:42:40Z
dc.date.issued2020-05-11
dc.description.abstractEsta revisión provee un resumen general de las investigaciones realizadas en los últimos 10 años acerca de los esteroides sexuales (17β-Estradiol, Testosterona, 11 Ketotestosterona y 17α, 20β-DHP), las gonadotropinas (Fsh y Lh) y sus principales reguladores (GnRH1-3 y GnIH1-3); y su respectiva función en la modulación de la reproducción. Específicamente sobre el eje Hipotálamo – Pituitaria – Gónada (HPG), en teleósteos modelo y neotropicales (Astyanax altiparanae, Steindachneridion parahybae, Salminus hillarii, Centropomus undecimalis). Mostramos que el papel regulador de éstos continúa siendo tema de discusión, pues varía en función de múltiples características, entre ellas, las estrategiareproductivas de la especie en cuestión y/o las condiciones en las que éstas son mantenidas durante el estudio. Históricamente, se ha descrito que la Fsh actúa en las fases tempranas de la reproducción, estimulando la biosíntesis de estradiol y testosterona necesarios para la gametogénesis; mientras la Lh está implicada en las fases finales del ciclo reproductivo (maduración final de los gametos y desove). Sin embargo, en especies con desarrollo asincrónico y desove múltiple, la Lh se produce durante todo el ciclo en paralelo con la Fsh, sugiriendo la necesidad de ambas hormonas en la gametogénesis y maduración final. Adicionalmente, investigaciones recientes en especies con comportamiento migratorio reproductivo, han evidenciado una disminución significativa en la expresión del ARNm de la subunidad β de Lh (lhb) cuando los individuos son mantenidos en cautiverio, lo que podría ocasionar alguna disfunción reproductiva bajo los actuales sistemas de cultivo, considerado hoy el gran problema de la acuicultura contemporánea. Desafortunadamente, los estudios de estos tópicos en especies suramericanas son aún incipientes, por lo que se hace necesario centrar las investigaciones hacia el esclarecimiento del control neuroendocrino de la reproducción en especies nativas, más aún cuando estas especies son mantenidas en cautiverio.spa
dc.description.abstractThis review summarises research over the last 10 years regarding sex steroids (17β-estradiol, testosterone, 11 ketotestosterone and 17α, 20β-DHP), gonadotropins (Fsh and Lh), their main regulators (GnRH1-3 and GnIH1-3) and their functions in modulating reproduction. It focuses specifically on the hypothalamic–pituitary–gonadal (HPG) axis in model and Neotropical teleosts (Astyanax altiparanae, Steindachneridion parahybae, Salminus hillarii and Centropomus undecimalis). Their regulatory role continues to be a subject of discussion since it varies, depending on multiple characteristics such as the reproductive strategies of the species in question and/or the conditions in which these were maintained during the study period. It has been described that Fsh acts during the early stages of reproduction by stimulating the biosynthesis of estradiol and testosterone which are necessary for gametogenesis, whilst Lh is involved in the reproductive cycle’s final stages (final gamete maturation and spawning). However, Lh occurs throughout the cycle, in parallel with Fsh, in species having asynchronous development and multiple spawning, suggesting the need for both hormones during gametogenesis and final maturation. Recent research regarding species having reproductive migratory behaviour has highlighted a significant decrease in Lh β subunit (LHβ) mRNA expression when individuals are kept in captivity; this may have led to reproductive dysfunction in current culture systems, considered today as being the greatest problem facing contemporary aquaculture. Unfortunately, studying such topics related to South American species is still in its early stages so research must be focused on clarifying native species’ neuroendocrine control of reproduction, especially when these species are kept in captivity.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.22579/20112629.601
dc.identifier.eissn2011-2629
dc.identifier.issn0121-3709
dc.identifier.urihttps://repositorio.unillanos.edu.co/handle/001/2751
dc.identifier.urlhttps://doi.org/10.22579/20112629.601
dc.language.isospaspa
dc.publisherUniversidad de los Llanosspa
dc.relation.bitstreamhttps://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/601/pdf
dc.relation.citationeditionNúm. 1 , Año 2020spa
dc.relation.citationendpage63
dc.relation.citationissue1spa
dc.relation.citationstartpage52
dc.relation.citationvolume24spa
dc.relation.ispartofjournalOrinoquiaspa
dc.relation.referencesMasafumi A, Shunsuke M, Masayuki L, Shoji K, Noriko A, Kunio Y, Kazuyoshi U, Kazuyoshi T. Novel fish hypothalamic neuropeptides stimulate the release of gonadotrophins and growth hormone from the pituitary of sockeye salmon. J Endocrinol, 2006;188(3):417-423. doi: 10.1677/joe.1.06494.spa
dc.relation.referencesMohamed AA, Takeshi M, Chiemi M, Kohei Y. Involvement of Sex Steroid Hormones in the Early Stages of Spermatogenesis in Japanese Huchen (Hucho perryi )1. Biol Reprod, 2001; 65(4):1057-1066. doi: 10.1095/biolreprod65.4.1057.spa
dc.relation.referencesAndo H, Shahjahan M, Kitahashi T. Periodic regulation of expression of genes for kisspeptin, gonadotropin-inhibitory hormone and their receptors in the grass puffer: Implications in seasonal, daily and lunar rhythms of reproduction. Gen Comp Endocrinol, 2018;265:149-153. doi: 10.1016/j.ygcen.2018.04.006.spa
dc.relation.referencesAndreu-Vieyra CV, Buret AG, Habibi HR. Gronadotropin-releasing hormone induction of apoptosis in the testes of goldfish (Caraasius auratus). Endocrinology, 2005;146(3):1588-1596. doi: 10.1210/en.2004-0818.spa
dc.relation.referencesBarrero M, Small BC, D’Abramo LR, Hanson LA, Kelly AM. Comparison of estradiol, testosterone, vitellogenin and cathepsin profiles among young adult channel catfish (Ictalurus punctatus) females from four selectively bred strains. Aquaculture, 2007:264(1-4):390–397. doi: 10.1016/j.aquaculture.2006.12.003.spa
dc.relation.referencesBiran J, Golan M, Mizrahi N, Ogawa S, Parhar IS, Levavi-Sivan B. LPXRFa, the Piscine Ortholog of GnIH, and LPXRF Receptor Positively Regulate Gonadotropin Secretion in Tilapia (Oreochromis niloticus). Endocrinology, 2014;155(11):4391-4401. doi: 10.1210/en.2013-2047.spa
dc.relation.referencesBorg B. Androgens in teleost fishes. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1994;109(3):219-245. doi: 10.1016/0742-8413(94)00063-G.spa
dc.relation.referencesBreton B, Govoroun M, Mikolajczyk T. GTH I and GTH II Secretion Profiles during the Reproductive Cycle in Female Rainbow Trout : Relationship with Pituitary Responsiveness to GnRH-A Stimulation. Gen Comp Endocrinol, 1998;111(1):38-50. doi.org/10.1006/gcen.1998.7088spa
dc.relation.referencesBurow S, Fontaine R, von Krogh K, Mayer I, Nourizadeh-Lillabadi R, Hollander-Cohen L, et al. Medaka follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh): Developmental profiles of pituitary protein and gene expression levels. Gen Comp Endocrinol, 2018;272:93-108. doi: 10.1016/j.ygcen.2018.12.006.spa
dc.relation.referencesCavaco JE, Bogerd J, Goos H, Schulz RW. Testosterone Inhibits 11-Ketotestosterone-Induced Spermatogenesis in African Catfish (Clarias gariepinus)1. Biol Reprod, 2001;65(6):1807-1812. doi: 10.1095/biolreprod65.6.1807.spa
dc.relation.referencesChaube R, Mishra S, Singh RK. A comparison of steroid profiles in the testis and seminal vesicle of the catfish (Heteropneustes fossilis). Theriogenology, 2018; 105:90-96. doi: 10.1016/j.theriogenology.2017.09.010.spa
dc.relation.referencesChowdhury VS, Ubuka T, Osugi T, Shimura T, Tsutsui K. Identification, localization and expression of LPXRFamide peptides, and melatonin-dependent induction of their precursor mRNA in the newt brain. J Endocrinol, 2011;209(2):211-220. doi: 10.1530/JOE-10-0494.spa
dc.relation.referencesCiccone NA, Dunn IC, Boswell T, Tsutsui K, Ubuka T, Ukena K, Sharp PJ. Gonadotrophin Inhibitory Hormone Depresses Gonadotrophin alpha and Follicle-Stimulating Hormone beta Subunit Expression in the Pituitary of the Domestic Chicken”, J Neuroendocrinol, 2004;16(12):999-1006. doi: 10.1111/j.1365-2826.2005.01260.x.spa
dc.relation.referencesDevlin RH, Nagahama Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture, 2002;208(3-4):191-364. doi: 10.1016/S0044-8486(02)00057-1.spa
dc.relation.referencesFelip A, Zanuy S, Pineda R, Pinilla L, Carrillo M, Tena-Sempere M, Gómez A. Evidence for two distinct KiSS genes in non-placental vertebrates that encode kisspeptins with different gonadotropin-releasing activities in fish and mammals. Mol Cell Endocrinol, 2009;312(1-2):61-71. doi: 10.1016/j.mce.2008.11.017.spa
dc.relation.referencesHollander-Cohen, L. et al. Characterization of carp gonadotropins: Structure, annual profile, and carp and zebrafish pituitary topographic organization. Gen Comp Endocrinol. 2018;264:28-38. doi: 10.1016/j.ygcen.2017.11.022.spa
dc.relation.referencesHonji RM, Caneppele D, Pandolfi M, Lo Nostro FL, Guimarães-Moreiraa R. Characterization of the gonadotropin-releasing hormone system in the Neotropical teleost, Steindachneridion parahybae during the annual reproductive cycle in captivity. Gen Comp Endocrinol, 2019;273:73-85.doi: 10.1016/j.ygcen.2018.05.007.spa
dc.relation.referencesHoskins LJ, Xu M, Volkoff H. Interactions between gonadotropin-releasing hormone (GnRH) and orexin in the regulation of feeding and reproduction in goldfish (Carassius auratus). Horm Behav, 2008;54(3):379-385. doi: 10.1016/j.yhbeh.2008.04.011.spa
dc.relation.referencesHou ZS, Wen HS, Li JF, He F, Li Y, Tao YX. Hypothalamus-pituitary-gonad axis of rainbow trout (Oncorhynchus mykiss) during early ovarian development and under dense rearing condition. Gen Comp Endocrinol, 2016;236:131-138. doi: 10.1016/j.ygcen.2016.07.011.spa
dc.relation.referencesde Jesus LWO, Bogerd J, Vieceli FM, Branco GS, Camargo MP, Cassel M, Moreira RG, et al. Gonadotropin subunits of the characiform Astyanax altiparanae: Molecular characterization, spatiotemporal expression and their possible role on female reproductive dysfunction in captivity. Gen Comp Endocrinol, 2017;246:150-163. doi: 10.1016/j.ygcen.2016.12.004.spa
dc.relation.referencesKajimura S. et al. cDNA Cloning of Two Gonadotropin β Subunits (GTH-Iβ and -IIβ) and Their Expression Profiles during Gametogenesis in the Japanese Flounder (Paralichthys olivaceus). Gen Comp Endocrinol, 2001;122(2):117-129. doi: 10.1006/GCEN.2000.7610.spa
dc.relation.referencesKarigo T, Oka Y. Neurobiological Study of Fish Brains Gives Insights into the Nature of Gonadotropin-Releasing Hormone 1–3 Neurons. Front Endocrinol, 2013;4:177. doi: 10.3389/fendo.2013.00177.spa
dc.relation.referencesLandines MA, Prieto CA, Rodriguez L, Rosado R. Perfil de esteroides sexuales del capitán de la sabana (Eremophilus mutisii) durante un ciclo hidrológico completo. Rev udca Actual Divulg Cient, 2017;20(1):43-50.doi: <http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-42262017000100006&lng=en&nrm=iso>.spa
dc.relation.referencesLevavi-Sivan B, Bogerd J, Mananos EL, Gomez A, Lareyre JJ. Perspectives on fish gonadotropins and their receptors. Gen Comp Endocrinol, 2010;165(3):412-437. doi: 10.1016/J.YGCEN.2009.07.019.spa
dc.relation.referencesLubzens E, Young G, Bobe J, Cerdà J. Oogenesis in teleosts: How fish eggs are formed. Gen Comp Endocrinol, 2010;165(3):367-389. doi: 10.1016/J.YGCEN.2009.05.022.spa
dc.relation.referencesMaitra SK, Hattoraj A, Mukherjee S, Moniruzzaman M. Melatonin: A potent candidate in the regulation of fish oocyte growth and maturation. Gen Comp Endocrinol, 2013;181(1):215-222. doi: 10.1016/j.ygcen.2012.09.015.spa
dc.relation.referencesMateos J, Mañanósa E, Martínez-Rodríguez G, Carrillo M, Querat B, Zanuy S. Molecular characterization of sea bass gonadotropin subunits (α, FSHβ, and LHβ) and their expression during the reproductive cycle. Gen Comp Endocrinol, 2003;133(2):216-232. doi: 10.1016/S0016-6480(03)00164-3.spa
dc.relation.referencesMatsuda K, Nakamura K, Shimakura SI, Miura T, Kageyama H, Uchiyama M, Shioda S, Ando H. Inhibitory effect of chicken gonadotropin-releasing hormone II on food intake in the goldfish, Carassius auratus. Horm Behav, 2008;54(1):83-89. doi: 10.1016/j.yhbeh.2008.01.011.spa
dc.relation.referencesMelamed P, Sherwood N. (2005) Hormones and Their Receptors in Fish Reproduction. WORLD SCIENTIFIC (Molecular Aspects of Fish & Marine Biology). doi: 10.1142/5533.spa
dc.relation.referencesMelo MC, Dijk P, Andersson E, Nilsen T, Fjelldal P, Male R, et al. Androgens directly stimulate spermatogonial differentiation in juvenile Atlantic salmon (Salmo salar). Gen Comp Endocrinol, 2015;211:52-61. doi: 10.1016/j.ygcen.2014.11.015.spa
dc.relation.referencesMiranda LA, Chalde T, Elisio M, Strüssmann CA. Effects of global warming on fish reproductive endocrine axis, with special emphasis in pejerrey Odontesthes bonariensis. Gen Comp Endocrinol, 2013;192:45-54. doi: 10.1016/j.ygcen.2013.02.034.spa
dc.relation.referencesMiura T, Miura C, Ohta T, Nader MR, Todo T, Yamauchi K. Estradiol-17β Stimulates the Renewal of Spermatogonial Stem Cells in Males. Biochem Biophys Res Commun, 1999;264(1):230-234. doi: 10.1006/BBRC.1999.1494.spa
dc.relation.referencesMommsen TP, Vijayan MM, Moon TW. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fisher, 1999;9(3):211–268. doi: 10.1023/A:1008924418720.spa
dc.relation.referencesMoreira RG, Honji RM, Melo RG, Narcizo AM, Amaral JS, Araújo RC, Hilsdorf AW. The involvement of gonadotropins and gonadal steroids in the ovulatory dysfunction of the potamodromous Salminus hilarii (Teleostei: Characidae) in captivity. Fish Physiol Biochem, 2015;41(6):1435-1447. doi: 10.1007/s10695-015-0097-y.spa
dc.relation.referencesNagahama Y. 7 alpha, 20 beta-Dihydroxy-4-pregnen-3-one: A Teleost Maturation-Inducing Hormone. Dev Growth Differ. 1987;29:1–12.spa
dc.relation.referencesNagahama Y. Endocrine regulation of gametogenesis in fish. Int J Dev BioI, 1994;38(2):217-229. doi: doi=7981031.spa
dc.relation.referencesNagahama Y. 17α,20β-Dihydroxy-4-pregnen-3-one, a maturation-inducing hormone in fish oocytes: Mechanisms of synthesis and action. Steroids. Elsevier, 1997;62(1):190-196. doi: 10.1016/S0039-128X(96)00180-8.spa
dc.relation.referencesNagahama Y, Yamashita M. Regulation of oocyte maturation in fish. Dev Growth Differ, 2008;50(suppl1):S195-219. doi: 10.1111/j.1440-169X.2008.01019.x.spa
dc.relation.referencesNyuji M, Hamada K, Kazeto Y, Mekuchi M, Gen K, Soyano K, Okuzawa K. Photoperiodic regulation of plasma gonadotropin levels in previtellogenic greater amberjack (Seriola dumerili). Gen Comp Endocrinol, 2018;269:149-155. doi: 10.1016/j.ygcen.2018.09.007.spa
dc.relation.referencesOkubo K, Nagahama Y. Structural and functional evolution of gonadotropin-releasing hormone in vertebrates. Acta Physiologica, 2008;193(1):3-15. doi: 10.1111/j.1748-1716.2008.01832.x.spa
dc.relation.referencesPark JW, Jin YH, Oh SY, Kwon JY. Kisspeptin2 stimulates the HPG axis in immature Nile tilapia (Oreochromis niloticus). Comp Biochem Physiol Part B: Biochem Mol Biol, Biochemistry and Molecular Biology, 2016;202:31-38. doi: 10.1016/j.cbpb.2016.07.009.spa
dc.relation.referencesPassini G, Carvalho CVA, Carneiro-Sterzelecki F, Francisco-Baloia M, Ronzani-Cerqueira V. Spermatogenesis and steroid hormone profile in puberty of laboratory-reared common snook (Centropomus undecimalis). Aquaculture, 2019;500:622-630. doi: 10.1016/j.aquaculture.2018.10.031.spa
dc.relation.referencesPeng C, Chang JP, Yu KL, Wong AO, Van-Goor F, Peter RE, Rivier JE. Neuropeptide-Y stimulates growth hormone and gonadotropin-II secretion in the goldfish pituitary: involvement of both presynaptic and pituitary cell actions. Endocrinology, 1993;132(4):1820-1829. doi: 10.1210/endo.132.4.8462479.spa
dc.relation.referencesPeng W, Cao M, Chen J, Li Y, Wang Y, Zhu Z, Hu W. GnIH plays a negative role in regulating GtH expression in the common carp, Cyprinus carpio L. Gen Comp Endocrinol, 2016;235:18-28. doi: 10.1016/j.ygcen.2016.06.001.spa
dc.relation.referencesPlanas JV, Swanson P. Maturation-Associated Changes in the Response of the Salmon Testis to the Steroidogenic Actions of Gonadotropins (GTH I and GTH II ) In Vitro. Biol Reprod, 1995;52(3):697-704. doi:10.1095/biolreprod52.3.697spa
dc.relation.referencesQi X, Zhou W, Li S, Lu D, Yi S, Xie R, Liu X, Zhang Y, Lin H. “Evidences for the regulation of GnRH and GTH expression by GnIH in the goldfish, Carassius auratus”, Mol Cell Endocrinol, 2013;366(1):9-20. doi: 10.1016/j.mce.2012.11.001.spa
dc.relation.referencesRather MA, Bhat IA, Gireesh-Babu P, Chaudhari A, Sundaray JK, Sharma R. Molecular characterization of kisspeptin gene and effect of nano-encapsulted kisspeptin-10 on reproductive maturation in Catla catla. Domest Anim Endocrinol, 2016;56:36-47. doi: 10.1016/j.domaniend.2016.01.005.spa
dc.relation.referencesRocha MJ, Arukwe A, Kapoor BG. (2008) Fish reproduction. 1st ed. Science Publishers. Pp.632.spa
dc.relation.referencesSaborido-Rey F. (2008) Ecología de la reproducción y potencial reproductivo en las poblaciones de peces marinos. Instituto de Investigaciones Marinas (CSIC) Universidad de Vigo. Pp.71.spa
dc.relation.referencesSawada K, Ukena A, Satake H, Iwakoshi E, Minakata H, Tsutsui K. “Novel fish hypothalamic neuropeptide”. Eur J Biochem, 2002;269(24):6000-6008. doi: 10.1046/j.1432-1033.2002.03351.x.spa
dc.relation.referencesSchulz RW, de França LR, Lareyre JJ, Le Gac F, Chiarini-Garcia H, Nobrega RH, Miura T. Spermatogenesis in fish. Gen Comp Endocrinol, 2010;165(3):390-411. doi: 10.1016/j.ygcen.2009.02.013.spa
dc.relation.referencesSwanson P, Dickey JT, Campbell B. Biochemistry and physiology of fish gonadotropins. Fish Physiol Biochem, 2003;28:53-59.spa
dc.relation.referencesTena-Sempere M, Felip A, Gómez A, Zanuy S, Carrillo M. Comparative insights of the kisspeptin/kisspeptin receptor system: Lessons from non-mammalian vertebrates”. Gen Comp Endocrinol, 2012;175(2):234-243. doi: 10.1016/j.ygcen.2011.11.015.spa
dc.relation.referencesThorson JF, Prezotto LD, Cardoso RC, Sharpton SM, Edwards JF, et al. (2014) “Hypothalamic Distribution, Adenohypophyseal Receptor Expression, and Ligand Functionality of RFamide-Related Peptide 3 in the Mare During the Breeding and Nonbreeding Seasons1”. Biology of Reproduction, 2014;90(2):1-9. doi: 10.1095/biolreprod.113.112185.spa
dc.relation.referencesTokarz J, Möller G, de Angelis MH, Adamski J. “Zebrafish and steroids: What do we know and what do we need to know?”. J Steroid Biochem Mol Biol, 2013;137:165-173. doi: 10.1016/j.jsbmb.2013.01.003.spa
dc.relation.referencesTokarz J, Möller G1, Hrabě de Angelis M, Adamski J. Steroids in teleost fishes: A functional point of view. Steroids, 2015;103:123-144. doi: 10.1016/j.steroids.2015.06.011.spa
dc.relation.referencesTsutsui K, Saigoh E, Ukena K, Teranishi H, Fujisawa Y, Kikuchi M, et al. A Novel Avian Hypothalamic Peptide Inhibiting Gonadotropin Release. Biochem Biophys Res Commun, 2000;275(2):661-667. doi: 10.1006/BBRC.2000.3350.spa
dc.relation.referencesTsutsui K. A new key neurohormone controlling reproduction, gonadotropin-inhibitory hormone (GnIH): Biosynthesis, mode of action and functional significance. Progress in Neurobiology, 2009;88(1):76-88. doi: 10.1016/j.pneurobio.2009.02.003.spa
dc.relation.referencesTsutsui K, Osugi T, Son YL, Ubuka T. Review: Structure, function and evolution of GnIH. Gen Comp Endocrinol, 2018;264:48-57. doi: 10.1016/j.ygcen.2017.07.024.spa
dc.relation.referencesUbuka T, Bentley GE, Ukena K, Wingfield JC, Tsutsui K. Melatonin induces the expression of gonadotropin-inhibitory hormone in the avian brain. Proc Natl Acad Sci USA, 2005;102(8):3052-3057. doi: 10.1073/PNAS.0403840102.spa
dc.relation.referencesUbuka T, Morgan K, Pawson AJ, Osugi T, Chowdhury VS, Minakata H, et al. Identification of Human GnIH Homologs, RFRP-1 and RFRP-3, and the Cognate Receptor, GPR147 in the Human Hypothalamic Pituitary Axis. PLoS One, 2009;4(12):e8400. doi: 10.1371/journal.pone.0008400.spa
dc.relation.referencesUbuka T, Son YL, Tsutsui K. Molecular, cellular, morphological, physiological and behavioral aspects of gonadotropin-inhibitory hormone. Gen Comp Endocrinol, 2016;227:27-50. doi: 10.1016/j.ygcen.2015.09.009.spa
dc.relation.referencesUkena K, Iwakoshi-Ukena E, Osugi T, Tsutsui K. Identification and localization of gonadotropin-inhibitory hormone (GnIH) orthologs in the hypothalamus of the red-eared slider turtle, Trachemys scripta elegans. Gen Comp Endocrinol, 2016;227:69-76. doi: 10.1016/j.ygcen.2015.06.009.spa
dc.relation.referencesValdebenito I, Paiva L, Berland M. Atresia folicular en peces teleósteos : una revisión. Arch Med Vet, 2011;43(1):11-25. doi.org/10.4067/S0301-732X2011000100003spa
dc.relation.referencesVolkoff H. The Neuroendocrine Regulation of Food Intake in Fish: A Review of Current Knowledge. Front Neurosci, 2016;10:540. doi: 10.3389/fnins.2016.00540.spa
dc.relation.referencesWu C, Patiño R, Davis KB, Chang X. Localization of estrogen receptor α and β RNA in germinal and nongerminal epithelia of the channel catfish testis. Gen Comp Endocrinol, 2001;124(1):12-20. doi: 10.1006/gcen.2001.7668.spa
dc.relation.referencesWylie MJ, Setiawan AN, Irvine GW, Symonds JE, Elizur A, Lokman PM. Effects of neuropeptides and sex steroids on the pituitary-gonadal axis of pre-pubertal F1 wreckfish (hāpuku) Polyprion oxygeneios in vivo: Evidence of inhibitory effects of androgens. Gen Comp Endocrinol, 2018;257:113-121. doi: 10.1016/j.ygcen.2017.08.018.spa
dc.relation.referencesYaron Z, Gur G, Melamed P, Rosenfeld H, Elizur A, Levavi-Sivan B. Regulation of fish gonadotropins. Int Rev Cytol, 2003;225:131-185. doi.org/10.1016/S0074-7696(05)25004-0spa
dc.relation.referencesYu KL, Peter RE. Alterations in gonadotropin-releasing hormone immunoactivities in discrete brain areas of male goldfish during spawning behavior. Brain Research, 1990;512(1):89-94. doi: 10.1016/0006-8993(90)91174-F.spa
dc.relation.referencesYu KL, Rosenblum PM, Peter RE. In vitro release of gonadotropin-releasing hormone from the brain preoptic-anterior hypothalamic region and pituitary of female goldfish. Gen Comp Endocrinol, 1991;81(2):256-267. doi: 10.1016/0016-6480(91)90010-4.spa
dc.relation.referencesZhang Y, Li S, Liu Y, Lu D, Chen H, Huang X, et al. Structural diversity of the gnih/gnih receptor system in teleost: Its involvement in early development and the negative control of LH release. Peptides, 2010;31(6):1034-1043. doi: 10.1016/j.peptides.2010.03.003.spa
dc.relation.referencesZohar Y, Muñoz-Cueto JA, Elizur A, Kah O. Neuroendocrinology of reproduction in teleost fish. Gen Comp Endocrinol, 2010;165(3):438-455. doi: 10.1016/j.ygcen.2009.04.017.spa
dc.rightsOrinoquia - 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/601spa
dc.title¿Qué sabemos de los esteroides sexuales y las gonadotropinas en la reproducción de teleósteos neotropicales?spa
dc.title.translatedWhat do we know about sex steroids and gonadotropins regarding Neotropical teleost reproduction?eng
dc.typeArtículo de revistaspa
dc.typeJournal Articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.localSección Ciencias agrariasspa
dc.type.localSección Agricultural scienceseng
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication

Archivos