Publicación:
Algunas consideraciones de epidemiología e inmunopatología de la peste porcina clásica

dc.contributor.authorSalgado Ruíz, Jefersson Stiven
dc.contributor.authorJaramillo-Hernández, Dumar Alexander
dc.date.accessioned2023-11-08T13:56:51Z
dc.date.available2023-11-08T13:56:51Z
dc.date.issued2021
dc.descriptionIncluye figuras.spa
dc.description.abstractLa peste porcina clásica (PPC) es una enfermedad causada por un virus ARN de la familia Flaviviridae, genero Pestivirus conocido como Pestivirus C. En la actualidad se conoce su distribución mundial y es causante de grandes pérdidas económicas en las producciones porcícolas. Sus únicos reservorios naturales son el cerdo y el jabalí. El objetivo de esta revisión es presentar una actualización sobre algunos aspectos relevantes epidemiológicos e inmunopatológicos de la PPC. La PPC es una enfermedad de notificación obligatoria para Colombia y los animales persistentemente infectados son la clave para su diseminación y endemicidad. La infección por el virus de la PPC se caracteriza por coagulación intravascular diseminada, trombocitopenia e inmunosupresión, dependiendo en severidad por la virulencia de las distintas cepas. El virus tiene afinidad por monocitos/macrófagos y células endoteliales vasculares donde tiene la capacidad de inducir diferentes mecanismos celulares que le permiten proliferar y persistir en el animal como lo son: el estrés oxidativo al incrementar los niveles de especies reactivas de oxígeno que genera una disminución de la biodisponibilidad de óxido nítrico; la fisión mitocondrial que permite una supervivencia celular por la inhibición de la apoptosis; y la inmunosupresión debido a la depleción de linfocitos T y B creada por la piroptosis en función de la gasdermina-D en órganos linfoides periféricos que reduce la respuesta inmune humoral y celular. El entendimiento inmunopatológico desde la explicación molecular en la PPC es importante en el aporte conceptual del desarrollo de nuevas estrategias profilácticas y terapéuticas que permitan controlar/ erradicar esta enfermedad.spa
dc.description.abstractClassical swine fever (CSF) is a disease caused by RNA virus, Flaviviridae family, genus Pestivirus, known as Pestivirus C. At present its worldwide distribution is known and is the cause of great economic losses in pig production. Its only natural reservoirs are pigs and wild boar. The aim of this review is to present an update on some relevant epidemiological and immunopathological aspects of CSF. CSF is a notifiable disease for Colombia and persistently infected animals are the key to its spread and endemicity. CSF virus infection is characterized by disseminated intravascular coagulation, thrombocytopenia, and immunosuppression, depending on severity due to the virulence of the different strains. The virus has affinity for monocytes/macrophages and vascular endothelial cells where it has the ability to induce different cellular mechanisms that allow it to proliferate and persist in the animal, such as: oxidative stress by increasing the levels of reactive oxygen species that generates a decrease of the bioavailability of nitric oxide; mitochondrial fission that allows cell survival by inhibiting apoptosis; and immunosuppression due to the depletion of T and B lymphocytes created by pyroptosis as a function of gasdermin-D in peripheral lymphoid organs that reduces the humoral and cellular immune response. The immunopathological understanding from the molecular explanation in CSF is important in the conceptual contribution of the development of new prophylactic and therapeutic strategies that allow to control/eradicate this disease. Keywords: Communicable diseases; immunology; oxidative stress; pyroptosis; virology (Source:DeCS).eng
dc.format.extent12 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationSalgado-Ruíz, J. S. y Jaramillo-Hernández, D. A. (2021). Algunas consideraciones de epidemiología e inmunopatología de la peste porcina clásica. Revista MVZ Córdoba,27(1).spa
dc.identifier.eissn2361spa
dc.identifier.instnameUniversidad de los Llanosspa
dc.identifier.issn0122-0268spa
dc.identifier.reponameRepositorio Universidad de los Llanosspa
dc.identifier.repourlhttps://repositorio.unillanos.edu.co/spa
dc.identifier.urihttps://repositorio.unillanos.edu.co/handle/001/3124
dc.language.isospaspa
dc.publisherUniversidad de Los Llanosspa
dc.publisher.placeVillavicenciospa
dc.relation.citationissue1spa
dc.relation.citationvolumeVol. 27spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalRevista MVZ Córdobaspa
dc.relation.referencesKleiboeker SB. Swine fever: classical swine fever and African swine fever. Vet Clin North Am Food Anim Pract. 2002; 18(3):431451.https://doi.org/10.1016/S07490720(02)00028-2spa
dc.relation.referencesSmith DB, Meyers G, Bukh J, Gould EA, Monath T, Scott Muerhoff A, et al. Proposed revision to the taxonomy of the genus Pestivirus, family Flaviviridae. J Gen Virol. 2017; 98(8):2106-2112. https://doi. org/10.1099/jgv.0.000873spa
dc.relation.referencesElbers AR, Vos JH, Bouma A, van Exsel AC , Stegeman A. Assessment of the use of gross lesions at post-mortem to detect outbreaks of classical swine fever. Vet Microbiol. 2003;96(4):345-356. https://doi.org/10.1016/j.vetmic.2003.09.005spa
dc.relation.referencesGong W, Jia J, Zhang B, Mi S, Zhang L, Xie X, et al. Serum metabolomic profiling of piglets infected with virulent classical swine fever virus. Front Microbiol. 2017; 8:731.https://doi.org/10.3389/fmicb.2017.00731spa
dc.relation.referencesFeng L, Li XQ, Li XN, Li J, Meng X, Zhang H, et al. In vitro infection with classical swine fever virus inhibits the transcription of immune response genes. Virology J. 2012; 9(1):1-11. https://doi.org/10.1186/1743422X-9-175spa
dc.relation.referencesOIE. World organisation for animal health. Clasical swine fever. Technical.Disease Cards; 2020. https://www.oie.int/fileadmin/Home/eng/Animal_Health_in_the_World/docs/pdf/Disease_cards/CLASSICAL_SWINE_FEVER.pdfspa
dc.relation.referencesSun J, Shi Z, Guo H, Tu C. Changes in the porcine peripheral blood mononuclear cell proteome induced by infection with highly virulent classical swine fever virus. J Gen Virol. 2010; 91(9):2254–2262. https://doi. org/10.1099/vir.0.022020-0spa
dc.relation.referencesMeyers G, Rümenapf T, Thiel HJ. Molecular cloning and nucleotide sequence of the genome of hog cholera virus. Virology. 1989; 171(2):555-567. https://doi.org/10.1016/0042-6822(89)90625-9spa
dc.relation.referencesPaton D, McGoldrick A, Greiser-Wilke I, Parchariyanon S, Song J, Liou PP, Belak S. Genetic typing of classical swine fever virus. Vet Microbiol. 2000; 73(2-3):137157. https://doi.org/10.1016/S03781135(00)00141-3spa
dc.relation.referencesRios L, Núñez JI, Díaz de Arce H, Ganges L, Pérez L. Revisiting the genetic diversity of classical swine fever virus: A proposal for new genotyping and subgenotyping schemes of classification. Transbound Emerg Dis. 2018; 65(4):963-971. https://doi. org/10.1111/tbed.12909spa
dc.relation.referencesBeer M, Goller K, Staubach C, Blome S. Genetic variability and distribution of Classical swine fever virus. Anim Health Res Rev. 2015; 16(1):33. https://doi.org/10.1017/ S1466252315000109spa
dc.relation.referencesSabogal Z, Mogollón J, Rincón M, Clavijo A. Phylogenetic analysis of recent isolates of classical swine fever virus from Colombia. Virus Res. 2006; 115(1):99-103. https://doi.org/10.1016/j.virusres.2005.06.016spa
dc.relation.referencesPereda A, Greiser Wilke I, Schmitt B, Rincon M, Mogollon JD, Sabogal Z, et al. Phylogenetic analysis of classical swine fever virus (CSFV) field isolates from outbreaks in South and Central America. Virus Res. 2005; 110(1-2):111-118. https://doi. org/10.1016/j.virusres.2005.01.011spa
dc.relation.referencesSilva MN, Silva D, Leite AS, Gomes AL, Freitas AC, Pinheiro-Junior J, Jesus AL. Identification and genetic characterization of classical swine fever virus isolates in Brazil: a new subgenotype. Arch Virol. 2017;162(3):817-822. https://doi.org/10.1007/ s00705-016-3145-8spa
dc.relation.referencesGong W, Wu J, Lu Z, Zhang L, Qin S, Chen F, et al. Genetic diversity of subgenotype 2.1 isolates of classical swine fever virus. Infect Genet Evol. 2016; 41:218-226. https://doi.org/10.1016/j.meegid.2016.04.002spa
dc.relation.referencesAn D, Lim S, Choe S, Kim K, Cha R, Cho I, et al. Evolutionary dynamics of classical swine fever virus in South Korea:1987–2017. Vet Microbiol. 2018; 225:79-88. https://doi.org/10.1016/j.vetmic.2018.09.0209/12spa
dc.relation.referencesDepner K, Müller A, Gruber A, Rodriguez A, Bickhardt K, Liess B. Classical swine fever in wild boar (Sus scrofa) experimental infections and viral persistence. DTW. Dtsch Tierarztl Wochenschr. 1995; 102(10):381-384. https://pubmed.ncbi.nlm.nih.gov/8591736/24.spa
dc.relation.referencesSchulz K, Staubach C, Blome S. African and classical swine fever: similarities, differences and epidemiological consequences. Vet. Res. 2017; 48(1):1-13. https://doi.org/10.1186/s13567-017-0490-xspa
dc.relation.referencesWeesendorp E, Stegeman A, Loeffen WL. Quantification of classical swine fever virus in aerosols originating from pigs infected with strains of high, moderate or low virulence. Vet Microbiol. 2009; 135(34):222-230. https://doi.org/10.1016/j. vetmic.2008.09.073spa
dc.relation.referencesBøtner A, Belsham G.Virus survival in slurry: analysis of the stability of foot-and-mouth disease, classical swine fever, bovine viral diarrhoea and swine influenza viruses. Vet Microbiol. 2012; 157(1-2):41-49. https://doi.org/10.1016/j.vetmic.2011.12.010spa
dc.relation.referencesStoian A , Petrovan V, Constance L, Olcha M, Dee S, Diel D, et al. Stability of classical swine fever virus and pseudorabies virus in animal feed ingredients exposed to transpacific shipping conditions. Transbound Emerg Dis. 2020; 67(4):1623-1632. https://doi.org/10.1111/tbed.13498spa
dc.relation.referencesCabezón O, Colom Cadena A, Muñoz González S, Pérez Simó M, Bohórquez J, Rosell R, et al. Postnatal Persistent Infection With Classical Swine Fever Virus in Wild Boar: ¿A Strategy for Viral Maintenance? Transbound Emerg Dis. 2017; 64(2):651655. https://doi.org/10.1111/tbed.1239spa
dc.relation.referencesBohorquez J, Muñoz González S, Pérez Simó M, Revilla C, Domínguez J, Ganges L. Identification of an immunosuppressive cell population during classical swine fever virus infection and its role in viral persistence in the host. Viruses. 2019; 11(9):822. https://doi.org/10.3390/v11090822spa
dc.relation.referencesBohórquez J, Wang M, Pérez Simó M, Vidal E, Rosell R, Ganges L. Low CD4/CD8 ratio in classical swine fever postnatal persistent infection generated at 3 weeks after birth. Transbound Emerg Dis. 2019; 66(2):752762. https://doi.org/10.1111/tbed.13080spa
dc.relation.referencesRios L, Coronado L, Naranjo D, Martínez O, Perera C, Hernandez L, et al. Deciphering the emergence, genetic diversity and evolution of classical swine fever virus. Sci Rep. 2017; 7(1):1-18. https://doi.org/10.1038/s41598-017-18196-yspa
dc.relation.referencesICA. Programa de Erradicación Peste Porcina Clásica. Instituto Colombiano Agropecuario: Colombia; 2018. ttps://www.ica.gov. co/getdoc/ea9c6aa0-a5fc-472f-869b975b27d7ac35/peste-porcina-clasica-(1).aspxspa
dc.relation.referencesPineda P, Deluque A, Peña M, Diaz O, Allepuz A, Casal J. Descriptive epidemiology of classical swine fever outbreaks in the period 2013-2018 in Colombia. PloS One. 2020; 15(6):e0234490. https://doi.org/10.1371/ journal.pone.0234490spa
dc.relation.referencesKatz DR. Recent developments in immunopathology. Second Edition. in Encyclopedia of Immunology Delves PJ, Roitt IM. Academic Press; 1998. https://doi.org/10.1006/rwei.1999.0342spa
dc.relation.referencesDräger C, Beer M, Blome S. Porcine complement regulatory protein CD46 and heparan sulfates are the major factors for classical swine fever virus attachment in vitro. Arch Virol. 2015; 160(3):739-746. https://doi.org/10.1007/s00705-0142313-yspa
dc.relation.referencesZhang Y, Liu Y, Xiao F, Liu C, Liang X, Chen J, et al. Rab5, Rab7, and Rab11 are required for caveola-dependent endocytosis of classical swine fever virus in porcine alveolar macrophages. J Virol. 2018; 92(15):e0079718. https://doi.org/10.1128/JVI.00797-18spa
dc.relation.referencesShi B, Liu C, Zhou J, Wang S, Gao Z, Zhang X, et al. Entry of classical swine fever virus into PK-15 cells via a pH-, dynamin, and cholesterol-dependent, clathrin-mediated endocytic pathway that requires Rab5 and Rab7. J Virol. 2016; 90(20):9194-9208. https://doi.org/10.1128/JVI.00688-16spa
dc.relation.referencesZheng G, Li L, Zhang Y, Qu L, Wang W, Li M, et al. MERTK is a host factor that promotes classical swine fever virus entry and antagonizes innate immune response in PK-15 cells. Emerg Microbes Infect. 2020; 9(1):571-581. https://doi.org/10.1080/22 221751.2020.1738278spa
dc.relation.referencesLiu C, Liu Y, Cheng Y, Zhang Y, Zhang J, Liang X, et al. The ESCRT-I Subunit Tsg101 Plays Novel Dual Roles in Entry and Replication of Classical Swine Fever Virus. J Virol. 2021; 95(6):e01928-20. https://doi.org/10.1128/ JVI.01928-20spa
dc.relation.referencesYuan F, Li D, Li C, Zhang Y, Song H, Li S, et al. ADAM17 is an essential attachment factor for classical swine fever virus. PLoS Pathog. 2021; 17(3):e1009393. https://doi. org/10.1371/journal.ppat.1009393spa
dc.relation.referencesKataria AK, Kataria N. Evaluation of oxidative stress in pigs affected with classical swine fever. Porcine Res. 2012; 2(2):35-38. http://www.porc.bioflux.com.ro/docs/2012.35-38.pdfspa
dc.relation.referencesHe L, Zhang Y, Fang Y, Liang W, Lin J, Cheng M. Classical swine fever virus induces oxidative stress in swine umbilical vein endothelial cells. BMC Vet Res. 2012; 10(1):1-9. https://doi.org/10.1186/s12917-014-0279-3spa
dc.relation.referencesLi S, Wang J, He WR, Feng S, Li Y, Wang X, et al. Thioredoxin 2 is a novel E2-interacting protein that inhibits the replication of classical swine fever virus. J Virol. 2015; 89:8510-8524. https://doi.org/10.1128/ JVI.00429-15spa
dc.relation.referencesZaffuto K, Piccone M, Burrage T, Balinsky C, Risatti G, Borca M, et al Classical swine fever virus inhibits nitric oxide production in infected macrophages. J Gen Virol.2007; 88(11):3007-3012. https://doi.org/10.1099/vir.0.83042-0spa
dc.relation.referencesCao Z, Yang Q, Zheng M, Lv H, Kang K, Zhang Y. Classical swine fever virus nonstructural proteins modulate Toll-like receptor signaling pathways in porcine monocyte-derived macrophages. Vet Microbiol. 2019; 230:101-109. https://doi. org/10.1016/j.vetmic.2019.01.025spa
dc.relation.referencesChen L, Dong X, Zhao M, Shen H, Wang J, Pei J, et al. Classical swine fever virus failed to activate nuclear factor-kappa b signaling pathway both in vitro and in vivo. Virol J. 2012; 9(1):1-8. https://doi.org/10.1186/1743-422X-9-293spa
dc.relation.referencesDong X, Tang S. Classical swine fever virus NS5A protein changed inflammatory cytokine secretion in porcine alveolar macrophages by inhibiting the NF-κB signaling pathway. Virol J. 2016; 13(1):19. https://doi.org/10.1186/s12985-0160545-zspa
dc.relation.referencesTizard IR. Introducción a la inmunología veterinaria, octava edición. capitulo sexto; señalización celular: las citoquinas y sus receptores; ruta de transducción de señales: La ruta de JAK-STAT. ELSEVIER; 2009.spa
dc.relation.referencesWang J, Chen S, Liao Y, Zhang E, Feng S, Yu S, et al. Mitogen-activated protein kinase 2, a novel E2-interacting protein, promotes the growth of classical swine fever virus via attenuation of the JAK-STAT signaling pathway. J Virol. 2016; 90(22):10271-10283. https://doi.org/10.1128/JVI.01407-16spa
dc.relation.referencesBensaude E, Turner JL, Wakeley PR, Sweetman DA, Pardieu C, Drew TW, et al. Classical swine fever virus induces proinflammatory cytokines and tissue factor expression and inhibits apoptosis and interferon synthesis during the establishment of long-term infection of porcine vascular endothelial cells. J Gen Virol.2004; 85(4):1029-1037. https://doi. org/10.1099/vir.0.19637-0spa
dc.relation.referencesJinghan W, Yuan S, Meng X-Yu, Lian-Feng L, Yongfeng L, Yuzi L,Wenjing W, et al. Comprehensive evaluation of the host responses to infection with differentially virulent classical swine fever virus strains in pigs. Virus Res. 2018; 255:68-76. https://doi.org/10.1016/j.virusres.2018.06.012spa
dc.relation.referencesLin Z, Liang W, Kang K, Li H, Cao Z, Zhang Y. Classical swine fever virus and p7 protein induce secretion of IL-1β in macrophages. J Gen Virol. 2014; 95(12):2693-269. https://doi.org/10.1099/vir.0.068502-0spa
dc.relation.referencesFan S, Yuan J, Deng S, Chen Y, Xie B, Wu K, et al. Activation of Interleukin-1_ Release by the Classical Swine Fever Virus Is Dependent on the NLRP3 Inflammasome, Which Affects Virus Growth in Monocytes. Front. Cell Infect Microbiol. 2018; 8:225. https://doi.org/10.3389/fcimb.2018.00225spa
dc.relation.referencesCarrasco CP, Rigden RC, Vincent IE, Balmelli C, Ceppi M, Bauhofer, O, et al. Interaction of classical swine fever virus with dendritic cells. J Gen Virol. 2004; 85(6):1633-1641. https://doi.org/10.1099/vir.0.19716-0spa
dc.relation.referencesWestermann B. Bioenergetic role of mitochondrial fusion and fission. Biochim Biophys Acta. 2012; 1817(10):18331838. https://doi.org/10.1016/j.bbabio.2012.02.033spa
dc.relation.referencesZorov DB, Vorobjev IA, Popkov VA, Babenko VA, Zorova LD, Pevzner, IB, et al. Lessons from the discovery of mitochondrial fragmentation (fission):a review and update. Cells. 2019; 8(2):175. https://doi.org/10.3390/cells8020175spa
dc.relation.referencesGou H, Zhao M, Xu H, Yuan J, He W, Zhu M, et al. CSFV induced mitochondrial fission and mitophagy to inhibit apoptosis. Oncotarget. 2017; 8(24):39382. https://doi.org/10.18632/oncotarget.17030spa
dc.relation.referencesJingjing Pei, Jieru Deng, Zuodong Ye, Jiaying Wang, Hongchao Gou, Wenjun Liu, et al. Absence of autophagy promotes apoptosis by modulating the ROS-dependent RLR signaling pathway in classical swine fever virus infected cells. Autophagy. 2016; 12(10):1738-1758. https://doi.org/10.1080/15548627.2016.1196318spa
dc.relation.referencesRehwinkel J, Gack MU. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol. 2020; 20(9):537-551. https://doi.org/10.1038/s41577-020-0288-3spa
dc.relation.referencesYuan J, Zhu M, Deng S, Fan S, Xu H, Liao J, et al. Classical swine fever virus induces pyroptosis in the peripheral lymphoid organs of infected pigs. Virus Res. 2018; 250:37-42. https://doi.org/10.1016/j.virusres.2018.04.004spa
dc.relation.referencesMa SM, Mao Q, Yi L, Zhao MQ, Chen JD. Apoptosis, autophagy, and Pyroptosis: immune escape strategies for persistent infection and pathogenesis of classical swine fever virus. Pathogens. 2019; 8(4):239. https://doi.org/10.3390/pathogens8040239spa
dc.relation.referencesSborgi L, Rühl S, Mulvihill E, Pipercevic J, Heilig R, Stahlberg H, et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J. 2016; 35(16):1766-1778. https://doi. org/10.15252/embj.201694696spa
dc.relation.referencesFink SL, Cookson BT. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell. Microbiol 2006; 8(11):1812-1825. https://doi.org/10.1111/j.1462-5822.2006.00751.xspa
dc.relation.referencesBrown VR, Bevins SN. A review of classical swine fever virus and routes of introduction into the United States and the potential for virus establishment. Front Vet Sci. 2018; 5:31. https://doi.org/10.3389/fvets.2018.00031spa
dc.relation.referencesCoronado L, Perera CL, Rios L, Frías MT, Pérez L. A Critical Review about Different Vaccines against Classical Swine Fever Virus and Their Repercussions in Endemic Regions. Vaccines. 2021; 9(2):154. https:// doi.org/10.3390/vaccines9020154spa
dc.relation.referencesXie Z, Pang D, Yuan H, Jiao H, Lu C, Wang K, et al. Genetically modified pigs are protected from classical swine fevervirus. PLOS Pathog. 2018; 14(12):e1007193. https://doi.org/10.1371/journal.ppat.1007193spa
dc.rightsDerechos Reservados - Universidad de Los Llanos, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourcehttps://doi.org/10.21897/rmvz.2361spa
dc.subject.armarcPeste porcina
dc.subject.proposalEnfermedad transmisiblespa
dc.subject.proposalInmunologíaspa
dc.subject.proposalEstrés oxidativospa
dc.subject.proposalPiroptosisspa
dc.subject.proposalCommunicable diseaseseng
dc.subject.proposalImmunologyeng
dc.subject.proposalOxidative stresseng
dc.subject.proposalPyroptosiseng
dc.titleAlgunas consideraciones de epidemiología e inmunopatología de la peste porcina clásicaspa
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Anexo 1
Tamaño:
141.3 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta de autorización
Bloque de licencias
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.43 KB
Formato:
Item-specific license agreed upon to submission
Descripción: