Publicación: Delimitación de especies del género Potamotrygon (Garman, 1877) mediante el uso de secuencias del gen mitocondrial Citocromo Oxidasa I (COI)
dc.contributor.advisor | Rodríguez Castro, Karen Giselle | |
dc.contributor.advisor | Ramírez Malaver, Jorge Luis | |
dc.contributor.author | Ubaque Bernal, Jhoimar de Jesús | |
dc.date.accessioned | 2023-04-13T13:28:57Z | |
dc.date.available | 2023-04-13T13:28:57Z | |
dc.date.issued | 2022 | |
dc.description | Incluye figuras, tablas y anexos | spa |
dc.description.abstract | El género Potamotrygon incluye 33 especies de rayas de rio, pero la identificación de sus especies ha presentado dificultades debido a la escasez de caracteres puntuales para identificar especies, su sistemática compleja con varios ejemplos de especies cripticas en todo su rango de distribución. Por tal razón la delimitación de especies utilizando características alternativas, como las moleculares, es importante en estos casos. El objetivo de este estudio fue delimitar las especies del género utilizando datos moleculares, comparar los resultados con las especies definidas con datos morfológicos y definir MOTUs (ingles Molecular operational Taxonomic Units) y relacionar su existencia con eventos evolutivos. Con el uso de 255 secuencias del gen citocromo oxidasa I (COI) obtenidas a partir de datos depositados en NCBI y BOLD de distintos autores y de diferentes localidades, realizamos la delimitación de especies de Potamotrygon con los métodos PTP, bPTP y GYMC. Para finalizar, se compararon las MOTUs encontradas con las regiones biogeográficas. Encontramos 84 haplotipos donde especies diferentes compartían un mismo haplotipo. Además, en el árbol ultramétrico se delimitaron por el análisis de GYMC 27 MOTUs, PTP 28MOTUs y bPTP 29 MOTUs. El consenso delimitó 28 MOTUs, que guardan relación con la región biogeográfica y en menor medida, con especies nominales. Ciertos MOTUs encontradas corresponden a las especies nominales de las secuencias trabajadas, sin embargo, algunas presentan inconsistencias. Sugerimos qué esto se debe a especies cripticas, una alta variabilidad morfológica y la existencia de complejos de especies. El número de regiones biogeográficas influencian en el número de MOTUs y algunas MOTUs son de amplia distribución mientras que algunas son propias de una única cuenca. Otro aspecto importante es que la historia evolutiva (biogeográfica) de las cuencas han influido en la alta diversidad de especies del género. Por último, la delimitación de especies utilizando métodos coalescentes con estas secuencias fue eficiente para el género Potamotrygon, los MOTUs obtenidos se ajustan adecuadamente a las regiones biogeográficas y la alta variabilidad de especies es explicada por los eventos evolutivos ocurridos en sus diferentes cuencas. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Biólogo | spa |
dc.description.program | Biología | spa |
dc.description.tableofcontents | 1.Resumen. – 2. Planteamiento Del Problema. – 3. Objetivos. – 4. Objetivo general. -- 5. Objetivos específicos. – 6. Justificación. – 7. Marco Teórico. – 8. Identificación molecular: códigos de barras de ADN y aplicaciones. – 9. Bases de datos genéticas. – 10. Delimitación de especies. – 11. Estudios en peces; género Potamotrygon. Metodología. – 12. Obtención y análisis de secuencias. – 13. Delimitación de especies. – 14. Clasificación biogeográfica. – 15. Resultados. Discusión De Resultados. – 16. Conclusiones. – 17. Bibliografía. – 18. Anexos. | spa |
dc.format.extent | 44 Páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Ubaque Bernal, Jhoimar de J. (2022). Delimitación de especies del género Potamotrygon (Garman, 1877) mediante el uso de secuencias del gen mitocondrial Citocromo Oxidasa I (COI) [Trabajo de grado, Universidad de los Llanos]. Repositorio digital Universidad de los Llanos. | spa |
dc.identifier.instname | Universidad de los Llanos | spa |
dc.identifier.reponame | Repositorio digital Universidad de los Llanos | spa |
dc.identifier.repourl | https://repositorio.unillanos.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unillanos.edu.co/handle/001/2849 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de los Llanos | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas e Ingeniería | spa |
dc.publisher.place | Villavicencio | spa |
dc.relation.indexed | N/A | spa |
dc.relation.references | Adnet S, Gismondi R, Antoine P. 2014. Comparisons of Dental Morphology in River Stingrays (Chondrichthyes: Potamotrygonidae) with New Fossils from the Middle Eocene of Peruvian Amazonia Rekindle Debate on Their Evolution.Naturwissenschaften 101 (1): 33–45. | spa |
dc.relation.references | Albert J, Lovejoy N, Crampton W. 2006. Miocene tectonism and the separation of cis - and trans - Andean rivers basin: evidence from Neotropical fishes. Journal of South American Earth Sciences, 21: 1-14. | spa |
dc.relation.references | Albert J, Reis, R. 2011. Historical Biogeography of Neotropical Freshwater Fishes. University of California Press, Los Angeles, California. | spa |
dc.relation.references | Alfonsin M, Bucetto M. 2019. Las especies en peligro de extinción y los mecanismos para la recuperación y conservación de la biodiversidad: un estudio sobre la viabilidad de los mecanismos y las trabas burocráticas. Revista LEX: Universidad Alas Peruanas, 9: 23, 297-324 | spa |
dc.relation.references | Altschul S.F, Gish W, Miller W, Myers E.W. Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol, 215: 403–410. | spa |
dc.relation.references | Angermeier P, Winston M. 1998. Local vs. Regional influences on local diversity in stream fish communities of Virginia. Ecology, 79 (3): 911-927. | spa |
dc.relation.references | Araujo M, Charvet-Almeida M, Pereira H. 2004.Freshwater Stingrays (Potamotrygonidae): Status, Conservation and Management Challenges. Information document AC20: 8, 1-6 | spa |
dc.relation.references | Banerjee D, Kumar V, Singha D, Chandra K, Laskar B, Kundu S, Chakraborty R, Chatterjee S. 2015. Identification through DNA barcoding of Tabanidae (Diptera) vectors of surra disease in India. Acta Trop, 150: 52–58 | spa |
dc.relation.references | Batista-Morales A, Lasso C, Morales-Betancourt M, Caballero S. 2017. Phylogeography and genetic structure of the species complex of the freshwater stingray, Potamotrygon orbignyi (Castelnau, 1855), among Amazonas and Orinoco rivers. Repositorio Uniandes, 1-56 | spa |
dc.relation.references | Beheregaray L, Caccone A. 2007. Cryptic biodiversity in a changing world. Journal of Biology, 6:9 | spa |
dc.relation.references | Bermingham, E. Moritz C. 1998. Comparative phylogeography: Concepts and applications. Molecular Ecology, 7: 367-369. | spa |
dc.relation.references | Blaxter M, Mann J, Chapman T, Thomas F, Whitton C, Floyd R Abebe E. 2005. Defining operational taxonomic units using DNA barcode data. Philos. Trans. R. Soc. Lond. B Biol. Sci 360: 1935–1943. | spa |
dc.relation.references | Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C.H, Xie D, Suchard M, Rambaut A, Drummond AJ. 2014. BEAST 2: A software platform for bayesianevolutionary analysis. PLoS Comput. Biol, 10(4): e1003537. | spa |
dc.relation.references | Caldas J, Castro-González V, Puentes M, Lasso C, Duarte L, Grijalba-Bendeck M, Gómez F, Navia A, Mejía-Falla P, Bessudo S, Diazgranados M, Zapata-Padilla L (Eds.). 2010. Plan de Acción Nacional para la Conservación y Manejo de Tiburones, Rayas y Quimeras de Colombia (PAN-Tiburones Colombia). Instituto Colombiano Agropecuario, Secretaria Agricultura y Pesca San Andrés Isla, Ministerio de Ambiente, Vivienda y Desarrollo Territorial, Instituto de Investigaciones Marinas y Costeras, Instituto Alexander Von Humboldt, Universidad del Magdalena, Universidad Jorge Tadeo Lozano, Pontifcia Universidad Javeriana, Fundación SQUALUS, Fundación Malpelo y otros EcosistemasMarinos, Conservación Internacional, WWF Colombia. Editorial Produmedios, Bogotá. 60 p. | spa |
dc.relation.references | Cañedo A, Rodríguez-Labrada R, Vázquez-Mojena Y. 2009. Centro Nacional para la Información Biotecnológica de los Estados Unidos: un palacio de la información para la medicina molecular. Revista cubana de los profesionales de la información y la comunicación en salud, 19(4): 19 | spa |
dc.relation.references | Carstens B.C, Pelletier T.A, Reid N.M, Satler J.D. 2013. How to fail at species delimitation. Mol Ecol. 22:4369–4383 | spa |
dc.relation.references | Carvalho M, Lovejoy N, Rosa R. 2003. Family Potamotrygonidae. 22-29. En: Reis, Feraris R, & Kullander S. Checklist of the Freshwater Fishes of South and Central America. Porto Alegre, Edipucrs, 729p. | spa |
dc.relation.references | Carvalho M, Sabaj-Pérez M, Lovejoy R. 2011. Potamotrygon tigrina, a new species of freshwater stingray from the Upper Amazon basin, closely related to Potamotrygon schroederi Fernández-Yépez 1958 (Chondricthyes: Potamotrygonidae). Zootaxa, 2827:1-30 | spa |
dc.relation.references | Carvalho M, Paulo J, Silva C, Loboda T, Silva P, Ragno M, Soares M. 2013. Systematics and Evolution of the Highly Diverse and Morphologically Complex Neotropical Freshwater Stingrays (Chondrichthyes: Potamotrygonidae). Modalidad, Conferencia: 9th Indo-Pacific Fish Conference, en Okinawa, Japan | spa |
dc.relation.references | CBD: Convention on Biological Diversity.2011. [citado 12 de Octubre de 2021]; Disponible en: http://www.cbd.int/ | spa |
dc.relation.references | Charvet-Almeida P, Araújo M, Almeida M. 2005 Reproductive aspects of freshwater stingrays (Chondrichthyes: Potamotrygonidae) in the Brazilian Amazon Basin. Journal of Northwest Atlantic Fishery. Science, 35: 165–171 | spa |
dc.relation.references | Cruz V, Vera M, Mendonça F, Pardo B, Martinez P, Oliveira C, Foresti F. 2015. First identification of interspecies hybridization in the freshwater stingrays Potamotrygon motoro and P. falkneri (Myliobatiformes, Potamotrygonidae). Conserv Genet, 16: 241–245 | spa |
dc.relation.references | Cruz V, Nobile M, Paim F, Adachi A, Ribeiro G, Ferreira D, Pansonato-Alves J, Charvet P, Oliveira C, Foresti F. 2021. Cytogenetic and molecular characteristics of Potamotrygon motoro and Potamotrygon sp. (Chondrichthyes, Myliobatiformes, Potamotrygonidae) from the Amazon basin: Implications for the taxonomy of the genus. Genetics and molecular biology, 44(2): e20200083. | spa |
dc.relation.references | Darriba D, Taboada L, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods, 9(8): 772. | spa |
dc.relation.references | Dellicour S, Flot J. 2018. The hitchhiker’s guide to single-locus species delimitation. Molecular Ecology Resources, 18(6):1234–1246 | spa |
dc.relation.references | Díaz J, Villanova V, Brancolini F, del Pazo F, Posner V, Grimberg A, Arranz A. 2016. First DNA Barcode Reference Library for the Identification of South American Freshwater Fish from the Lower Paraná River. PLoS ONE, 11(7): e0157419. | spa |
dc.relation.references | Drummond A.J, Bouckaert R. 2015. Bayesian Evolutionary Analysis with BEAST. Cambridge, United Kingdom Cambridge University Press. | spa |
dc.relation.references | Faria V, Rolim L, Vaz L, Furtado-Neto M. 2012. Reevaluation of RAPD Markers Involved in a Case of Stingray Misidentification (Dasyatidae: Dasyatis). Genetics and Molecular Research, 11(4): 3835–45. | spa |
dc.relation.references | Fontenelle J, Marques F, Kolmann M, Lovejoy N. 2021a. Biogeography of the neotropical freshwater stingrays (Myliobatiformes: Potamotrygoninae) reveals effects of continent- scale paleogeographic change and drainage evolution. J Biogeogr, 0(0): 1–14 | spa |
dc.relation.references | Fontenelle J, Marques F, Kolmann M, Lovejoy N. 2021b. Biogeography of the neotropicalfreshwater stingrays (Myliobatiformes: Potamotrygoninae) reveals effects of continent-scale paleogeographic change and drainage evolution. J Biogeogr, 0(0):1–14. | spa |
dc.relation.references | Flot J.F. 2015. Species delimitation’s coming of age. Syst Biol, 64(6):897–899. | spa |
dc.relation.references | Floyd R, Abebe E, Papert A, Blaxter M. 2002. Molecular Barcodes for Soil Nematode Identification. Mol Ecol, 11(4):839-850 | spa |
dc.relation.references | Funk D, Omland E. 2003. Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics. 34: 397–423 | spa |
dc.relation.references | García D, Lasso C, Morales M, Caballero S. 2015: Molecular systematics of the freshwater stingrays (myliobatiformes: potamotrygonidae) of the Amazon, Orinoco, Magdalena, Esequibo, Caribbean, and Maracaibo basins (Colombia – Venezuela): evidence from three mitochondrial genes. Mitochondrial DNA, 1-13 | spa |
dc.relation.references | García-Melo J, Oliveira C, Da Costa S, Ochoa-Orrego L, Garcia L, Maldonado Ocampo J .2019. Species delimitation of neotropical Characins (Stevardiinae): Implications for taxonomy of complex groups. PLoS ONE, 14(6): e0216786. | spa |
dc.relation.references | García-Villamil, D. 2012. Molecular systematics of the freshwater stingrays (Myliobatiformes: Potamotrygonidae) of the Amazon, Orinoco, Magdalena, Essequibo, Caribe and Maracaibo basins (Colombia- Venezuela): evidence from mitochondrial genes. Tesis de Maestría, Universidad de los Andes, Colombia, Bogotá. 32 pp. | spa |
dc.relation.references | Gonçalves P, Oliveira-Marques A, Matsumoto T, Miyaki C. 2015. DNA barcoding identifies illegal parrot trade. J Hered, 106: 560–564. | spa |
dc.relation.references | Graça W, Pavanelli C, Buckup P. 2008. Two new species of Characidium (Characiformes: Crenuchidae) from Paraguay and Xingu River basins, State of Mato Grosso, Brazil. Copeia, 2008:326–332 | spa |
dc.relation.references | Hartvig I, Czako M, Kjær ED, Nielsen LR, Theilade I .2015. The Use of DNA Barcoding in Identification and Conservation of Rosewood (Dalbergia spp.). PLoS ONE, 10(9) | spa |
dc.relation.references | Hebert P, Cywinska A, Ball S, de Waard J. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society Lond, 270: 313-321. | spa |
dc.relation.references | Hebert P, Penton E, Burns J, Janzen D, Hallwachs W. 2004a. Ten species in one: DNA barcoding reveals cryptic species in the Neotropical skipper butterfly Astraptes fulgerater. PNAS. 101(41): 12-17 | spa |
dc.relation.references | Hebert P, Stoeckle M, Zemlak T, Francis M. 2004b. Identification of Birds through DNA Barcodes. PLoS Biol, 2(10):312 | spa |
dc.relation.references | Hebert P, Ryan Gregory T.2005. The Promise of DNA Barcoding for Taxonom. Systematic Biology, 54(5): 852–859 | spa |
dc.relation.references | Hey J, Waples R, Arnold M, Butlin R, Harrison R. 2003. Understanding and confronting species uncertainty in biology and conservation. Trends Ecol Evol, 18(11):597–603. | spa |
dc.relation.references | Hoffmann M, Hilton-Taylor C, Angulo A, Böhm M, Brooks. 2010. The Impact of Conservation on the Status of the World s Vertebrates. Science, 2; 330(6010), 1503- 1509. | spa |
dc.relation.references | Hopkins G, Freckleton, R. 2002. Declines in the numbers of amateur and professional taxonomists: implications for conservation. Animal Conservation, 5: 245-249. | spa |
dc.relation.references | Hubert N, Renno J. 2006. Historical biogeography of South American freshwater fishes. Journal of Biogeography, 33: 1414-1436. | spa |
dc.relation.references | Jalali K, Ojha R,Venkatesan T. 2015. DNA Barcoding for Identification of Agriculturally Important Insects. En: Chakravarthy K. New Horizons in Insect Science: Towards Sustainable Pest Management, Springer India. Bangalore India, 13-23 | spa |
dc.relation.references | Jones M, Ghoorah A, Blaxter M. 2011. JMOTU and taxonerator: turning DNA barcode sequences into annotated operational taxonomic units. PLOS ONE, 6:e19259 | spa |
dc.relation.references | Kaur S. 2015. DNA Barcoding and Its Applications. IJERGS, 3 (2): 3. | spa |
dc.relation.references | Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12):1647-9. | spa |
dc.relation.references | Kekkonen M, Mutanen M, Kaila L, Nieminen M, Hebert PDN. 2015. Delineating Species with DNA Barcodes: A Case of Taxon Dependent Method Performance in Moths. PLoS One, 10: e0122481. | spa |
dc.relation.references | Kolokotronis S, Leslie M. 2010. Barcoding bushmeat: Molecular identification of Central African and South American harvested vertebrates. Conservation Genetics, 11(4): 1389-1404 | spa |
dc.relation.references | Kullander S. 1986. Cichlid Fishes of the Amazon River Drainage of Peru. Swedish Stockholm: Museum of Natural History. | spa |
dc.relation.references | Kuntke F, Jonge N, Hesselsøe M, & Nielsen J. 2020. Stream water quality assessment by metabarcoding of invertebrates. Ecological Indicators, 111: 105982. | spa |
dc.relation.references | Lasso, C. 1985. Las rayas de agua dulce. Natura 77: 6–9 | spa |
dc.relation.references | Lasso C, Rosa R, Sanchez-Duarte P, Morales-Betancourt M, Agudelo-Cordoba E. 2013. IX. Rayas de Agua Dulce (Potamotrygonidae) de Suramérica. Parte I. | spa |
dc.relation.references | Colombia, Venezuela, Ecuador, Perú, Brasil, Guyana, Surinam Y Guayana Francesa: Diversidad, Bioecolog+ia, Uso Y Conservación. Serie Editorial Recursos Hidrobiológicos Y Pesqueros Continentales de Colombia. Serie Edit. Bogotá D.C., Colombia: Instituto de Investigación de los Recursos Biológicos Alexander von Humboldt (IAvH). | spa |
dc.relation.references | Latrubesse E, Stevaux J, Santos M, Assine M. 2005. Grandes sistemas fluviais: geologia, geomorfologia e paleoidrologia. En Quaternário do Brasil, edited by. Souza C, Suguio K, Oliveira A, Oliveira P. 276–297. Ribeirão Preto: Holos Editora. | spa |
dc.relation.references | Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11):1451-2. | spa |
dc.relation.references | Lobola T, Carvalho M. 2013. Systematic revisión of the Potamotrygon motoro (Mûller & Henle, 1841) species complex in the Paraná-Paraguay basin, with description of two new ocellated species (Chondrichthyes: Myliobatiformes: Potamotrygonidae). Neotropical Ichthyology 11(4): 693-737. | spa |
dc.relation.references | Lohse, K. 2009. Can mtDNA barcodes be used to delimit species? A response to Pons et al (2006). Systematic Biology, 58(4): 439–442. | spa |
dc.relation.references | Lovejoy N, Birminghan E, Martin A. 1998. South American rays came in with the sea. Nature, 396:421-422. | spa |
dc.relation.references | Lundberg J, Marshall L, Guerrero J, Horton B, Malabarba M, Wesselingh F. 1998. The stage for Neotropical fish diversification: A history of tropical South American rivers pp. 13-48. En: Malabarba M, Reis R, Vari R, Lucena Z, Lucena C (Eds. Phylogeny and Classification of Neotropical Fishes. Porto Alegre, Brazil, EDIPUCRS. pp 603 | spa |
dc.relation.references | Magoga G, Coral S, Fontaneto D, Montagna M. 2018. Barcoding of Chrysomelidae of Euro-Mediterranean area: efficiency and problematic species. Scientific Reports, 8: 13398. | spa |
dc.relation.references | Mason N, Fletcher N, Gill, B, Funk W, Zamudio K. 2020. Coalescent-based species delimitation is sensitive to geographic sampling and isolation by distance. Systematics and Biodiversity, 18(3): 269–280. | spa |
dc.relation.references | Mayr E.1942. Systematics and the origin of species from the viewpoint of a zoologist. Cambridge, MA: Harvard University Press | spa |
dc.relation.references | Meyer C, Paulay G. 2005. DNA barcoding: error rates based on comprehensive sampling. PLoS Biology, 3(12): e422. | spa |
dc.relation.references | Montoya-Burgos J. 2003. Historical biogeography of the catfish genus Hypostomus (Siluriformes: Loricariidae), with implications on the diversification of Neotropical ichthyofauna. Molecular Ecology, 12: 1855-1867. | spa |
dc.relation.references | Nanney, D. 1982. Genes and phenes in Tetrahymena. Bioscience, 32: 783–78 | spa |
dc.relation.references | Nielsen R, Wakeley J. 2001. Distinguishing migration from Isolation: a Markov Chain Monte Carlo approach. Genet, 158(2): 885–896. | spa |
dc.relation.references | Nosil P, Funk D, Ortiz-Barriento D. 2009. Divergent selection and heterogeneous genomic divergence. Molecular ecology, 18(3): 375-402 | spa |
dc.relation.references | Olivieri G, Zimmermann E, Randrianambinina B, Rasoloharijaona S, Rakotondravony D, Guschanski K, Radespiel U. 2007.The ever-increasing diversity in mouse lemurs: three new species in north and northwestern Madagascar. Mol Phylogenet Evol, 43(1):309-27. | spa |
dc.relation.references | Pace, N. 1997. A molecular view of microbial diversity and the biosphere. Science 276: 734–740. | spa |
dc.relation.references | Paine M, McDowell J, Graves J. (2007). Specific identification of Western Atlantic Ocean scombrids using mitochondrial DNA cytochrome oxidase subunit I (COI) gene region sequences. Bull. Mar. Sci., 80(2): 353-367. | spa |
dc.relation.references | Palacio-López K, Rodriguez-López N. 2007. Phenotypic Plasticity in Lippia alba (Verbenaceae) in Response to Water Availability in Two Light Environments. Acta Biológica Colombiana: 12, 187-198. | spa |
dc.relation.references | Palsbøll P, Martine B, and Fred W. Allendorf. 2007. Identification of Management Units Using Population Genetic Data. Trends in Ecology and Evolution, 22 (1): 11– 16 | spa |
dc.relation.references | Panprommin D, Soontornprasit K, Tuncharoen S, Pithakpol S, Keereelang J. 2019. DNA barcodes for the identification of species diversity in fish from Kwan Phayao, Thailand Journal of Asia-Pacific Biodiversity, 12(3): 82-389 | spa |
dc.relation.references | Pentinsaari M, Hebert P, Mutanen M. 2014. Barcoding beetles: A regional survey of 1872 species reveals high identification success and unusually deep interspecific divergences. PLoS One, 9(9): e108651 | spa |
dc.relation.references | Pentinsaari M, Vos R, Mutanen M. 2017. Algorithmic single-locus species delimitation: effects of sampling effort, variation and non monophyly in four methods and 1870 species of beetles. Molecular Ecology Resources, 17(3): 393–404. | spa |
dc.relation.references | Pereira L, Hanner R, Foresti F, Oliveira C. 2013. Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna?. BMC Genetics, 14:20. | spa |
dc.relation.references | Pfenninger M, Schwenk K. 2007. Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol Biol, 7: 121 | spa |
dc.relation.references | Pfenninger M, Schwenk K. 2007. Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol Biol, 7: 121 | spa |
dc.relation.references | Pfenninger M, Schwenk K. 2007. Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol Biol, 7: 121 | spa |
dc.relation.references | Porter T, Hajibabaei, M. 2018. Over 2.5 million COI sequences in GenBank and growing. PloS one, 13(9), | spa |
dc.relation.references | Quattrini A, Wu T, Soong K, Jeng M, Benayahu Y,McFadden C. 2019. A next generation approach to species delimitation reveals the role of hybridization in a cryptic species complex of corals. BMC Evolutionary Biology, 19:116 | spa |
dc.relation.references | Queiroz K. 2007. Species concepts and species delimitation. Syst. Biol, 56(6): 879–886. | spa |
dc.relation.references | Rambaut A, Suchard MA, Xie D. 2014. Tracer v1.6. Available from http://beast.bio.ed.ac.uk/Tracer | spa |
dc.relation.references | Rambaut A. 2019. Figtree v1.4.4. Available from http://tree.bio.ed.ac.uk/software/figtree/ | spa |
dc.relation.references | Ramirez J.L, Santos C.A, Machado C.B, Oliveira A.K, Garavello J.C, Britski H.A, Galetti P.M. 2020. Molecular phylogeny and species delimitation of the genus Schizodon (Characiformes, Anostomidae). Mol Phylogenet Evol, 153:106959. | spa |
dc.relation.references | Ramirez J.L, Santos C.A, Machado C.B, Oliveira A.K, Garavello J.C, Britski H.A, Galetti P.M. 2020. Molecular phylogeny and species delimitation of the genus Schizodon (Characiformes, Anostomidae). Mol Phylogenet Evol, 153:106959. | spa |
dc.relation.references | Renza-Millán M, Villa-Navarro F, Lasso C, Morales-Betancourt M, Caballero S. 2016. Capítulo 15. Potamotrygon motoro (Müller & Henle 1841) (Myliobatiformes, Potamotrygonidae) en las cuencas del Orinoco y Amazonas (Colombia). P 377-388. En: Lasso C, Rosa R, Morales-Betancourt M, Garrone-Neto D, Carvalho M (Eds). 2016. XV. Rayas de agua dulce (Potamotrygonidae) de Suramérica. Parte II: Colombia, Brasil, Perú, Bolivia, Paraguay, Uruguay y Argentina. Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Investigación de los Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D. C., Colombia. 435 pp | spa |
dc.relation.references | Renza-Millán M, Lasso C, Morales-Betancourt M, Villa F, Caballero S. 2019. Mitochondrial DNA diversity and population structure of the ocellate freshwater stingray Potamotrygon motoro (Müller & Henle, 1841) (Myliobatiformes: Potamotrygonidae) in the Colombian Amazon and Orinoco Basins. Mitochondrial DNA Part A, 30(3): 466-473 | spa |
dc.relation.references | Rincón, G. 2006. Aspectos Taxonómicos, Alimentação E Reprodução Da Raia de Agua Doce Potamotrygon Orbignyi (Castelnau), (Elasmobranchii: Potamotrygonidae) No Rio Paranã-Tocantins. Universidade Estadual Paulista Julio de Mesquita Filho. | spa |
dc.relation.references | Rodrigues M.S, Morelli K, Jansen AM. 2017. Cytochrome c oxidase subunit 1 gene as a DNA barcode for discriminating Trypanosoma cruzi DTUs and closely related species. Parasites Vectors, 10: 488 | spa |
dc.relation.references | Rocha A, Garber N, Garber A, Stuck K. 2005. Structure of the mitochondrial control region and flanking tRNA genes of Mugil cephalus. Hidrobiológica, 15(2): 139-149 | spa |
dc.relation.references | Rocha A, Garber N, Garber A, Stuck K. 2005. Structure of the mitochondrial control region and flanking tRNA genes of Mugil cephalus. Hidrobiológica, 15(2): 139-149 | spa |
dc.relation.references | Rosa R. 1985. A systematic revision of the South American freshwater stingrays (Chondrichthyes: Potamotrygonidae). Tesis Doctoral, College of William and Mary, Williamsburg, Virginia, 523 pp. | spa |
dc.relation.references | Rosa R, Charvet-Almeida P, Quijada C. 2010. Biology of the South American potamotrygonid stingrays. pp 24186. En: Carrier J, Musick J, Heithaus R. Sharks and their relatives II. Biodiversity, adaptive physiology and conservation. CRC Press. 639 pp. | spa |
dc.relation.references | Rosenblum E, Sarver B, Brown J, Roches S, Hardwick K Tyler D Hether, EastmanJ, Pennell M, HarmonL. 2012. Goldilocks meets SantaRosalia: an ephemeral speciation model explains patterns of diversification across time scales. Evol. Biol, 39:255–61 | spa |
dc.relation.references | Rosser N, Freitas A, Huertas B, Joron, M, Lamas, G, Mérot C, Simpson F, Willmott K, Mallet J, & Dasmahapatra, K.(2019). Cryptic speciation associated with geographic and ecological divergence in two Amazonian Heliconius butterflies. Zoological Journal of the Linnean Society, 186:(1) 233–249 | spa |
dc.relation.references | Sanches D, Martins T, Lutz Í, Veneza I, Silva R.D, Araújo F, Muriel-Cunha J, Sampaio I, Garcia M, Sousa L.M, Evangelista-Gomes, G. 2021. Mitochondrial DNA suggests Hybridization in Freshwater Stingrays Potamotrygon (POTAMOTRYGONIDAE: MYLIOBATIFORMES) from the Xingu river, Amazonia and reveals speciation in Paratrygon aireba. Anais da Academia Brasileira de Ciências, 93(3): e20191325 | spa |
dc.relation.references | Schaefer S, Weitzman S, Britski H. 1989. Review of the Neotropical catfish genus Scoloplax (Pisces: Loricarioidea: Scoloplacidae) with comments on reductive characters in phylogenetic analysis. Proceedings of the Academy of Natural Sciences of Philadelphia, 141:181–211. | spa |
dc.relation.references | Schlick-Steiner B.C, Steiner F.M, Seifert B, Stauffer C, Christian E, Crozier R.H. 2010. Integrative taxonomy: a multisource approach to exploring biodiversity. Annu Rev Entomol, 55: 421-38 | spa |
dc.relation.references | Schoch C.L, Seifert K.A, Huhndorf S, Robert V, Spouge JL, Chen W, Consortium B. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc NatlAcad Sci USA, 109(16):6241–6246. | spa |
dc.relation.references | Schwentner M, Brian B, Richter S. 2011. An integrative approach to species delineation incorporating different species concepts: a case study of Limnadopsis (Branchiopoda: Spinicaudata), Biological Journal of the Linnean Society, 104 (3): 575–599, | spa |
dc.relation.references | Silva-Santos R, Ramirez J, Galetti P, Freitas P. 2018. Molecular Evidences of a Hidden Complex Scenario in Leporinus cf. friderici. Front. Genet, 9:47 | spa |
dc.relation.references | Sigovini M, Keppel E, Tagliapietra D. 2016. Open Nomenclature in the biodiversity era. Methods in Ecology and EvolutioN, 7(10): 1217-1225 | spa |
dc.relation.references | Silva T. 2017. Species descriptions and digital environments: alternatives for accessibility of morphological data. Revista Brasileira de Entomologia, 61(4): 277– 281 | spa |
dc.relation.references | Smith K. 2008. A Brief History of NCBI’s Formation and Growth. In The NCBI Handbook. 2nd edition. Bethesda, United States. National Center for Biotechnology Information. | spa |
dc.relation.references | Song H, Mu X, Wei M, Wang X, Luo J, Hu Y. 2015. Complete mitochondrial genome of the ocellate river stingray (Potamotrygon motoro). Mitochondrial DNA, 26(6): 857-8. | spa |
dc.relation.references | Sukumaran J, Knowles L. 2017. Multispecies coalescent delimits structure notspecies. PNAS, 114(1):1607–12.Tavares ES, Baker AJ. 2008. Single mitochondrial gene barcodes reliably identify sister-species in diverse clades of birds. BMC Evol Biol, 8(1): 81. | spa |
dc.relation.references | Thompson J.D, Higgins D.G, Gibson T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22): 4876-4880. | spa |
dc.relation.references | Toffoli D, Hrbek T, Araújo, Góes de M, Pinto de M, Charvet-Almeida P, Pires I. 2008. A test of the utility of DNA barcoding in the radiation of the freshwater stingray genus Potamotrygon (Potamotrygonidae, Myliobatiformes). Genetics and Molecular Biology, 31(1): 324-336 | spa |
dc.relation.references | Toffoli D, Hrbek T, Araújo, Góes de M, Pinto de M, Charvet-Almeida P, Pires I. 2008. A test of the utility of DNA barcoding in the radiation of the freshwater stingray genus Potamotrygon (Potamotrygonidae, Myliobatiformes). Genetics and Molecular Biology, 31(1): 324-336 | spa |
dc.relation.references | Ward R, Zemlak T, Innes B, Last P, Hebert P. 2005. DNA barcoding Australia’s fish species. Philos Trans Roy Soc Lond Ser B Biol Sci, 360:1847–1857 | spa |
dc.relation.references | Ward R, Hanner R, Hebert P. 2009. The campaign to DNA barcode all fishes, FISH-BOL. J Fish Biol, 74(2):329–56. | spa |
dc.relation.references | Wesselingh F, Räsänen M, Irion G, Vonhof H, Kaandorp R, Renema W, Pitmann L, Gingras M. 2002. Lake Pebas: A palaeoecological reconstruction of a Miocene, long-lived lake complex in western Amazonia. Cainozoic Research, 1:35– 81. | spa |
dc.relation.references | Wesselingh F, Salo J. 2006. A Miocene perspective on the evolution of the Amazonian biota. Scripta Geologica, 133:439–458. | spa |
dc.relation.references | Wilson E. 2003. The encyclopedia of life. Trends in Ecology and Evolution, 18(1): 77–80. | spa |
dc.relation.references | Zhang J, Hanner R. 2011. DNA barcoding is a useful tool for the identification of marine fishes from Japan. Biochemical Systematics and Ecology, 39(1): 31–42. | spa |
dc.relation.references | Zhang J, Kapli P, Pavlidis P, Stamatakis A. 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29: 2869– 2876. | spa |
dc.relation.references | Zhao Y, Yi Z, Warren A, Song W. 2018. Species delimitation for the molecular taxonomy and ecology of the widely distributed microbial eukaryote genus Euplotes (Alveolata, Ciliophora). Proc Biol Sci, 285(1871):20172159. | spa |
dc.relation.references | Zemlak T, Ward R, Connell A, Holmes B, Hebert P. 2009. DNA barcoding reveals overlooked marine fishes. Mol Ecol Resour, 9(1): 237-42. | spa |
dc.relation.references | Ziesler R; Ardizzone G. 1979. Las aguas continentales de América Latina. FAO, Rome | spa |
dc.rights | Derechos Reservados - Universidad de los Llanos, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.license | Atribución-SinDerivadas 4.0 Internacional (CC BY-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nd/4.0/ | spa |
dc.subject.armarc | Degradación de hábitats | |
dc.subject.armarc | Biodiversidad | |
dc.subject.proposal | Árbol ultramétrico | spa |
dc.subject.proposal | Cuencas biogeograficas | spa |
dc.subject.proposal | Especies crípticas | spa |
dc.subject.proposal | MOTU | spa |
dc.title | Delimitación de especies del género Potamotrygon (Garman, 1877) mediante el uso de secuencias del gen mitocondrial Citocromo Oxidasa I (COI) | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dspace.entity.type | Publication |
Archivos
Bloque original
1 - 3 de 3
Cargando...
- Nombre:
- Trabajo de grado
- Tamaño:
- 1.34 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- 164003231
Cargando...

- Nombre:
- Carta de autorización
- Tamaño:
- 20.76 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- 164003231
Cargando...

- Nombre:
- Nota de aceptación
- Tamaño:
- 530.78 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- 164003231
Bloque de licencias
1 - 1 de 1
Cargando...

- Nombre:
- license.txt
- Tamaño:
- 414 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: