Publicación:
Efeito do estresse pré-natal na regulação da inflamação alérgica pulmonar no modelo murino de asma experimental

dc.contributor.authorGonçalves Jr, Vagnerspa
dc.contributor.authorLigeiro de Oliveira, Ana Paulaspa
dc.contributor.authorKieling, Karinspa
dc.date.accessioned2016-07-01 00:00:00
dc.date.accessioned2022-06-13T17:41:55Z
dc.date.available2016-07-01 00:00:00
dc.date.available2022-06-13T17:41:55Z
dc.date.issued2016-07-01
dc.description.abstractDevido ao seu rápido crescimento, o feto é particularmente vulnerável a insultos e modificações no millieu hormonal. Este fato sugere que situações adversas experimentadas pela mãe grávida podem alterar o desenvolvimento e a saúde da prole, explicado principalmente pela permeabilidade da barreira placentária a diversos hormônios e substâncias. O objetivo deste trabalho foi estudar o efeito do estresse pré-natal na regulação da inflamação alérgica pulmonar, empregando o modelo murino de asma experimental. Para este propósito foram utilizadas camundongas virgens da linhagem Swiss, com 50 dias de idade. Foi empregado o modelo de choque nas patas para promover o estresse pré-natal e o modelo do “metrô de Nova Efeito do estresse pré-natal na regulação da inflamação alérgica pulmonar no modelo murino de asma experimental 65 Iorque” para o estresse pós-natal. As fêmeas foram distribuídas em 4 grupos experimentais: CC: fêmeas não estressadas;CE: fêmeas estressadas pós-natalmente aos 60 dias de idade (PND60), EC: fêmeas nascidas de mães estressadas entre o dia 15 (GD15) e 18 de gestação (GD18); EE: fêmeas nascidas de mães estressadas entre o GD15 e GD18 e estressadas pós-natalmente aos PND60. A indução da inflamação alérgica pulmonar foi realizada através da sensibilização dos animais com solução de ovalbumina (OVA) 0,1 mg.Kg-1 sc para avaliação do leucograma, lavado broncoalveolar (BAL), celularidade hematopoiética medular e neuroquímica. Os experimentos foram realizados 24h após a última sessão de nebulização.O número de células do BAL foi significantemente maior nos animais do grupo EE, em relação àqueles dos grupos CC (P<0.01), CE (P<0.01) e EC (P<0.001). Na contagem diferencial do BAL os linfócitos e macrófagos do grupo EE foram significantemente maiores que em os outros grupos avaliados (P<0.05). Na contagem diferencial de células no sangue não foram observadas alterações (P>0.05) para os linfócitos, neutrófilos, eosinófilos e monócitos; porém, observou-se diferenças significativas (P<0.05) entre o número de bastonetes dos grupos, sendo maior nos animais do grupo CC em relação àquelesdo grupo EC. O número de células hematopoiéticas da medula óssea foi significantemente (P<0.05) menor nos animais do grupo EE, em relação àqueles do grupo CC. No córtex pré-frontal, há diferenças significantes na relação Ácido Homovanílico/Dopamina (HVA/DA) (P<0.05), sendo maior nos animais do grupo EC, em relação àqueles do grupo CE. Em conclusão,o estresse pré-natal levou a modulação de células do sistema imune (SI) dos neonatos, evidenciado após a exposição a estresse agudo pós-natal, amplificando a resposta alérgica pulmonar. Sugere-se que a maior susceptibilidade dos animais do grupo EE seja consequência de alterações induzidas pelo estresse pré-natal no eixo hipotálamo-pituitária-adrenal (HPA).spa
dc.description.abstractDue to the rapid growth of the fetus it is particularly vulnerable to insults and changes in hormonal milieu. Therefore, is suggested that adverse situations experienced by the pregnant mother can alter the development and health of offspring, mainly due to the permeability of the placental barrier to various hormones and substances. The aim of the present investigation was to study the effects of prenatal stress in the regulation of pulmonary allergic inflammation, employing the murine model of experimental asthma. For this purpose, were used virgin female mice, Swiss lineage, of 50 days old. The models used were foot shock to induce prenatally stress, and "New York subway" stress to induce postnatally stress. Females were divided into 4 groups: CC group: not stressed females; CE group: postnatally stressed females (PND60); EC: females born from stressed mothers (GD15 to GD18); EE Group: females born from stressed mothers (GD15 to GD18) (footshock) and postnatally stressed (PND60). The induction of allergic pulmonary inflammation was done through sensitization of animals with 0,1 mg.Kg-1 sc of ovalbumin (OVA) solution, to further evaluate leukogram, bronchoalveolar lavage (BAL) hematopoietic marrow cellularity and neurochemistry. The experiments were performed 24 hours after the last session of nebulization. The number of BAL cells was significantly higher in EE group animals compared with the CC group (P<0.01), CE (P<0.01) and CE (P<0.001). In the differential count of the BAL, lymphocytes and macrophages of EE group were significantly higher than the other groups studied (P<0.05). In the blood differential cell count were not observed changes (P>0.05) for lymphocytes, neutrophils, eosinophils and monocytes; however, there were significant differences (P<0.05) observed in the number of rods cells between groups, being higher in animals the CC group compared to EC group. The number of hematopoietic cells of the bone marrow was significantly lower (P<0.05) in animals of Group EE, compared with CC group. In the prefrontal cortex, there were significant differences in homovanillic acid /dopamine (HVA/DA) (P<0.05) rate, being higher in the EC group, compared to EC group. In conclusion, prenatal stress modulated the immune system (SI) cells of neonates, evidenced after exposure to a post-natal acute stress by amplification of pulmonary allergic response. It is suggested that the increased susceptibility of animals EE group is a result of changes induced by prenatal stress on hypothalamus pituitary-adrenal (HPA) axis.eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/htmlspa
dc.identifier.doi10.22579/20112629.364
dc.identifier.eissn2011-2629
dc.identifier.issn0121-3709
dc.identifier.urihttps://repositorio.unillanos.edu.co/handle/001/2596
dc.identifier.urlhttps://doi.org/10.22579/20112629.364
dc.language.isospaspa
dc.publisherUniversidad de los Llanosspa
dc.relation.bitstreamhttps://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/364/pdf_53
dc.relation.bitstreamhttps://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/364/html_20
dc.relation.citationeditionNúm. 2 , Año 2016spa
dc.relation.citationendpage77
dc.relation.citationissue2spa
dc.relation.citationstartpage64
dc.relation.citationvolume20spa
dc.relation.ispartofjournalOrinoquiaspa
dc.relation.referencesAder R, Cohen N, Felten D. Psychoneuroimmunology: interactions system and the immune system. The Lancet. 1995;345: 99–103.spa
dc.relation.referencesBerkenbosh F, Wolvers D, Derijk R. Stress exposure and immunization Radioimmunoassays (RIAs) CRF antiserum protocol and. Journal of Steroidal Biochemistry and Molecular Biology. 1991;40(4): 639–647.spa
dc.relation.referencesBiondi M, Zannino LG. Psychological Stress, Neuroimmunomodulation, and Susceptibility to Infectious Diseases in Animals and Man: A Review. Psychotherapy and Psychosomatics. 1997;66(1):3–26.spa
dc.relation.referencesBoulet LP, FitzGerald JM, Reddel HK. The revised 2014 GINA strategy report: opportunities for change. Current opinion in pulmonary medicine. 2015;21(1): 1–7.spa
dc.relation.referencesChen E, Miller GE. Stress and inflammation in exacerbations of asthma. Brain, Behavior, and Immunity. 2007;21(8):993–999.spa
dc.relation.referencesChoy DF, Choy DF, Hart KM, Borthwick LA, Shikotra A, Nagarkar DR, et al. TH2 and TH17 inflammatory pathways are reciprocally regulated in asthma. 2015;7(301):301-.spa
dc.relation.referencesDhabhar FS, McEwen BS. Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking. Brain, behavior and immunity. 1997;11(4):286–306.spa
dc.relation.referencesEntringer S, Buss C, Wadhwa PD. Prenatal stress, development, health and disease risk: A psychobiological perspective-2015 Curt Richter Award Paper. Psychoneuroendocrinology. 2015;62:366–375.spa
dc.relation.referencesFelicio LF, Florio JC, Sider LH, Cruz-Casallas PE, Bridges RS. Reproductive experience increases striatal and hypothalamic dopamine levels in pregnant rats. Brain Research Bulletin, 1996;40(4):253-256.spa
dc.relation.referencesFonseca ESM, Palermo-Neto J. 2005. Participação do sistema opioidérgico e dos glicocorticóides nas alterações comportamentais. Universidade de São Paulo.spa
dc.relation.referencesFonseca ESM, Massoco CO, Palermo-Neto J. Effects of prenatal stress on stress-induced changes in behavior and macrophage activity of mice. Stress. 2002;124(5):954–960.spa
dc.relation.referencesGerardin DCC, Pereira OC, Kempinas WG, Florio JC, Moreira EG, Bernardi MM. Sexual behavior, neuroendocrine, and neurochemical aspects in male rats exposed prenatally to stress. Physiology and Behavior. 2005; 84(1):97–104.spa
dc.relation.referencesGitau R, Cameron A, Fisk NM, Glover V. Fetal exposure to maternal cortisol. The Lancet. 1998;352(9129):707–708.spa
dc.relation.referencesGlavin GB, Paré WP, Sandbak T, Bakke HK, Murison R. Restraint stress in biomedical research: An update. Neuroscience & Biobehavioral Reviews. 1994;18(2):223–249.spa
dc.relation.referencesGlover V, O'Connor TG, O'Donnell K. Prenatal stress and the programming of the HPA axis. Neuroscience and Biobehavioral Reviews. 2010;35(1):17–22.spa
dc.relation.referencesHamasato EK, de Lima AP, de Oliveira AP, dos Santos Franco AL, de Lima WT, Palermo-Neto J. 2014. Cohabitation with a sick partner increases allergic lung inflammatory response in mice. Brain, Behavior, and Immunity: 1–9.spa
dc.relation.referencesHislop A. Developmental biology of the pulmonary circulation. Paediatric Respiratory Reviews. 2005;6(1):35–43.spa
dc.relation.referencesHolt PG. Potential role of environmental factors in the etiology and pathogenesis of atopy: a working model. Environ Health Perspect, 1999;107 Suppl: 485–487.spa
dc.relation.referencesJacobson L. Hypothalamic-pituitary-adrenocortical axis regulation. Endocrinology and Metabolism Clinics of North America. 2005;34(2):271–292.spa
dc.relation.referencesJeffrery PK. The development of large and small airways. American Journal of Respiratory and Critical Care Medicine. 1988;157(5):S174–S180.spa
dc.relation.referencesJiang CL, Liu L, Li Z, Buttgereit F. The novel strategy of glucocorticoid drug development via targeting nongenomic mechanisms. Steroids. 2015;102:27–31.spa
dc.relation.referencesKajekar R. Environmental factors and developmental outcomes in the lung. Pharmacology and Therapeutics. 2007;114(2):129– 145.spa
dc.relation.referencesKandel E, Hyman S, Cohen J. 2014. Transtornos do humor e ansiedade. In McGraw-Hill, ed. Princípios de Neurociências: 1222– 1240.spa
dc.relation.referencesKandel E, LeDoux J, Damasio A. 2014. Emoções e sentimentos. Princípios de Neurociências. McGraw-Hill: 940–947.spa
dc.relation.referencesKapoor A, Petropoulos S, Matthews SG. Fetal programming of hypothalamic-pituitary-adrenal (HPA) axis function and behavior by synthetic glucocorticoids. Brain Research Reviews. 2008;57(2):586–595.spa
dc.relation.referencesKiecolt JK, Glaser R. Methodological Issues in Behavioral with Humans ' Immunology. Brain, Behavior and immunity. 1988;2:67-78.spa
dc.relation.referencesKohm AP, Kohm AP, Tang Y, Sanders VM, Jones SB. Activation of antigen-specific CD4+ Th2 cells and B cells in vivo increases norepinephrine release in the spleen and bone marrow. Journal of Immunology. 2000;165(2):725–733.spa
dc.relation.referencesKotecha S. Lung growth: implications for the newborn infant. Archives of disease in childhood. Fetal and neonatal edition. 2000;82(1):69–74.spa
dc.relation.referencesLazzarini R, Palermo-Neto J, Malucelli BE. Reduction of Acute inflammation in Rats by Diazepam: Role of Peripheral Benzodiazepine Receptors and Corticosterone. Immunopharmacology and Immunotoxicology. 2001;23(2):253–265.spa
dc.relation.referencesLigeiro-Oliveira AP, Fialho de Araújo AM, Lazzarini R, Silva ZL, De Nucci G, Muscará MN, Tavares de Lima W, Palermo- Neto J. Effects of amphetamine on immune-mediated lung inflammatory response in rats. Neuroimmunomodulation. 2004;11(3):181-190.spa
dc.relation.referencesMaier SF, Watkins LR, Maier F. Cytokines for Psychologists: Implications of Bidirectional Immune-to- Brain Communication for Understanding Behavior, Mood, and Cognition. Psychological Review. 1998;105:83–107.spa
dc.relation.referencesMarshall GD, Agarwal SK. Stress, immune regulation, and immunity: applications for asthma. Allergy and asthma proceedings : the official journal of regional and state allergy societies. 2000;21(4):241–246.spa
dc.relation.referencesMazur-Kolecka B, Kubera M, Skowron-Cendrzak, A., Basta-Kaim, A., Shani, J., Effect of prenatal stress on ontogenesis of immunoregulatory cell maturation in mice. Polish Journal of Pharmacology, 1996;48(6):621-625.spa
dc.relation.referencesMcEwen BS, Biron CA, Brunson KW, Bulloch K, Chambers WH, Dhabhar FS, Goldfarb RH, Kitson RP, Miller AH, Spencer RL, Weiss JM. The role of adrenocorticoids as modulators of immune function in health and disease: Neural, endocrine and immune interactions. Brain Research Reviews. 1997;23(1-2): 79–133.spa
dc.relation.referencesMelly S, Oitzl AD, Van-Haarst ER. Behavioral and neuroendocrine responses controlled by the concerted action of central minera locorticoid (MRS) and glucocorticoid receptors (GRS). Psychoneuroendrocrinology. 1997;22(Supplement 1):87-93.spa
dc.relation.referencesMonasterio N, Vergara E, Morales T. Hormonal influences on neuroimmune responses in the CNS of females. Frontiers in Integrative Neuroscience, 2013;7(January):8.spa
dc.relation.referencesNagata A, Yamada Y, Nakamura A, Asano T, Yamada T, Isaka M, Itoh M. Alteration of endogenous corticosteroids and catecholamines in allergen- induced eosinophilic inflammation in Brown Norway rats. Allergology International. 1999;48(3):209–215.spa
dc.relation.referencesNogueira PJ, Ferreira HH, Antunes E, Teixeira NA. Chronic mild prenatal stress exacerbates the allergen-induced airway inflammation in rats. Mediators of inflammation. 1999;8(2):119-122.spa
dc.relation.referencesOchoa-Amaya JE, Marino LP, Tobaruela CN, Namazu LB, Calefi AS, Margatho R, et al. Attenuated allergic inflammatory response in the lungs during lactation. Life Sciences. 2016;151:281–287.spa
dc.relation.referencesOchoa-Amaya JE, Hamasato EK, Tobaruela CN, Queiroz-Hazarbassanov N, Anselmo Franci JA, Palermo-Neto J, et al. Short-term hyperprolactinemia decreases allergic inflammatory response of the lungs. Life sciences. 2015;142: 66–75.spa
dc.relation.referencesOliveira APL, Lino-Dos-Santos-Franco A, Hamasato EK, Quinteiro- Filho W, Hebeda CB, Damazo AS, et al. Amphetamine modulates cellular recruitment and airway reactivity in a rat model of allergic lung inflammation. Toxicology Letters. 2011;200(1- 2):117–123.spa
dc.relation.referencesOliveira APL, Ligeiro de Oliveiraa AP, Lazzarinib R, Cavriania G, Quinteiro-Filhob WM, Tavares de Limaa W, Palermo-Netob J. Effects of single or repeated amphetamine treatment and withdrawal on lung allergic inflammation in rats. International Imunopharmacology. 2008;8(9):1164–1171.spa
dc.relation.referencesPalermo-Neto J, Massoco CO, Favare RC. Effects of maternal stress on anxiety levels, macrophage activity, and Ehrlich tumor growth. Neurotoxicol Teratol. 2001;23(5):497–507.spa
dc.relation.referencesPaxinos G. Watson, C., 1988. The Rat Brain in Stereotaxic Coordinates, 4th ed. CD-ROM. G. Paxinos & C. Watson, eds., San Diexgo, California.spa
dc.relation.referencesPortela CDP,Tibério IF, Leick-Maldonado EA, Martins MA, Palermo-Neto J. Effects of diazepam and stress on lung inflammatory response in OVA-sensitized rats. American journal of physiology. Lung cellular and molecular physiology. 2002;282(6):1289–1295.spa
dc.relation.referencesPortela CP, Leick-Maldonado EA, Kasahara DI, Prado CM, Calvo- Tibério IF, Martins MA, Palermo-Neto J. Effects of stress and neuropeptides on airway responses in ovalbumin-sensitized rats. NeuroImmunoModulation. 2007;14(2): 105–111.spa
dc.relation.referencesPremont RT, Gainetdinov RR. Physiological roles of G protein-coupled receptor kinases and arrestins. Annual review of physiology. 2007;69:511–534.spa
dc.relation.referencesDel Prete G. Human Th1 and Th2 lymphocytes: their role in the pathophysiology of atopy. Allergy. 1992;47(5):450–455.spa
dc.relation.referencesRiffo-Vasquez Y, A. P. Ligeiro de Oliveira AP, Page CP, Spina D, Tavares- de-Lima W. Role of sex hormones in allergic inflammation in mice. Clinical and Experimental Allergy. 2007;37(3):459–470.spa
dc.relation.referencesSaal FS, Even MD, Quadagno DM. Effects of maternal stress on puberty, fertility and aggressive behavior of female mice from different intrauterine positions. Physiology & Behavior. 1991;49(6):1073–1078.spa
dc.relation.referencesSegerstrom SC. Psychological Stress and the Human Immune System: A Meta- Analytic Study of 30 Years of Inquiry. Psychol ogy Bulletin. 2004;130(4):601–630.spa
dc.relation.referencesSemple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Progress in Neurobiology. 2013;106(107):1–16.spa
dc.relation.referencesSternberg EM. Eurosterone meeting. Neuroendocrine regulation of autoimmune / inflammatory disease. Journal of Endocrinology. 2001;169:429-435.spa
dc.relation.referencesTian WM, Yang YG, Shang YX, Cai XX, Chen WW, Zhang H. Role of 1,25-dihydroxyvitamin D 3 in the treatment of asthma. European Review for Medical and Pharmacological Sciences. 2014;18:1762-1769.spa
dc.relation.referencesTillie-Leblond I, Gosset P, Tonnel AB. Inflammatory events in severe acute asthma. Allergy: European Journal of Allergy and Clinical Immunology. 2005;60(1): 23-29.spa
dc.relation.referencesWeinstock M. The potential influence of maternal stress hormones on development and mental health of the offspring. Brain, Behavior and Immunity. 2005;19(4): 296–308.spa
dc.rightsOrinoquia - 2017spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/364spa
dc.subjectaislamientospa
dc.subjectmicosisspa
dc.subjectpecesspa
dc.subjectsanidadspa
dc.subjectfisheseng
dc.subjectfungieng
dc.subjecthealtheng
dc.subjectisolationeng
dc.titleEfeito do estresse pré-natal na regulação da inflamação alérgica pulmonar no modelo murino de asma experimentalspa
dc.title.translatedEffect of prenatal stress in regulating pulmonary allergic inflammation in a murine model of experimental asthmaeng
dc.typeArtículo de revistaspa
dc.typeJournal Articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.localSección Ciencias agrariasspa
dc.type.localSección Agricultural scienceseng
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication

Archivos