Publicación:
Estandarización de la expresión transitoria de proteínas de virulencia de Phytophthora Palmivora en hojas de palma de aceite

dc.contributor.advisorCorzo Herrera, Mariana spa
dc.contributor.advisorPachón García, Jorgespa
dc.contributor.authorSandoval Parra, Karen Ximenaspa
dc.date.accessioned2019-11-05T19:33:37Zspa
dc.date.available2019-11-05T19:33:37Zspa
dc.date.issued2018spa
dc.descriptionIncluye tablas, figuras, símbolos y abreviaturas.spa
dc.description.abstractEl cultivo de la palma de aceite y su industria se encuentran en constante crecimiento. Sin embargo, su sostenibilidad se ve limitada por factores bióticos como los microorganismos patogénicos. La pudrición del cogollo ha sido una grave enfermedad en la palma de aceite en Colombia y en países vecinos por más de 40 años, causando la destrucción de miles de hectáreas. La búsqueda del patógeno tomó écadas, y en el 2008 se logró identificar a Phytophthora palmivora como el oomicete causal de la enfermedad. Dada la necesidad de encontrar cultivares resistentes a este microorganismo, se planteó el estudio de proteínas efectoras que el patógeno libera al hospedero para iniciar su proceso de infección. Para lo anterior, se normalizaron los parámetros físicos y biológicos del bombardeo de efectores sobre foliolos, estimando su eficiencia por medio de genes reporteros. Se evaluó así la expresión de tres efectores de P. palmivora sobre dos cultivares de palma de aceite mediante dos ensayos histoquímicos indicadores de muerte celular: DAB y NBT. Con este estudio fue posible encontrar la combinación de factores físicos y biológicos que da lugar a una transformación eficaz, según la expresión del gen GUSPlus, para cada uno de los cultivares. El gen GFP probó no ser el adecuado para el seguimiento de la transformación en callo, ya que el callo es autofluorescente. El ensayo DAB señaló, al comparar la respuesta del cultivar OxG frente a cada uno de los tres efectores, que hay diferencias significativas indicando que este se ve más afectado por el E2 y E19. Por otro lado, Elaeis guineensis, no mostró diferencias significativas entre la afectación por cada efector. spa
dc.description.abstractOil palm crops and its industry are constantly growing. However, its sustainability is limited through biotic factors like pathogenic microorganisms. The bud rot has been a major oil palm disease in Colombia and nearby countries for over 40 years, where is responsible for the destruction of thousands of hectares. The search for the pathogen took decades, and in 2008 the causing oomycete was identified as Phytophthora palmivora. Given the necessity to find resistant cultivars to this microorganism, the study of effectors, virulence proteins that the pathogen releases to the host in order to start its colonization, was suggested through a standardization of the transient biolistic expression process. To perform the above, the biological and physical parameters of microparticle bombardment of effectors on leaves were optimized, estimating its efficiency through reporter genes. The expression of three effectors on two different oil palm cultivars was evaluated by the means of two histochemical assays that indicate cell death: DAB and NBT. It was possible to achieve the right combination of physical and biological factors that result in an efficient transformation, according to GUSPlus gene expression, for each one of the cultivars. The GFP gene probed not to be a suitable marker gene for transformation in callus, given that these are autofluorescent. DAB assay showed: by comparison of OxG cultivar response against each of the effectors, that there are significant differences indicating that is mostly affected by E2 y E19. On the other hand, Elaeis guineensis, did not displayed significant differences between the affectation for each effector.eng
dc.description.degreelevelPregradospa
dc.description.degreenameBiologíaspa
dc.description.notesTrabajo de grado presentado como requisito parcial para optar al título de Bióloga. spa
dc.description.tableofcontentsPlanteamiento del problema. -- Justificación. -- Objetivos. -- Marco teórico. -- Palma de aceite y su cultivo. -- Pudrición del cogollo. -- Generalidades de phytophthora palmivora. -- Interacciones moleculares planta-patógeno. -- Efectores y efectorómica. -- Transformación genética en plantas. -- Expresión transitoria en palma de aceite. – Metodología. -- Material vegetal. -- Figura 7. Arreglo final del callo en cajas de petri previo al bombardeo. -- Constructos plasmídicos. -- Preparación ADN-microcarriers. -- Ensayos de transformación mediante bombardeo por biobalística. -- Figura 8. Pistola de biobalística empleada en los ensayos. --Figura 9. Secuencia de montaje set de biobalística. -- Ensayos con genes marcadores. -- Detección de β-glucuronidasa mediante tinción con buffer GUS (x-GLUC). -- Ensayo de microscopía fluorescente con GFP. -- Ensayos histoquímicos indicadores de posible muerte celular (HR). -- Prueba DAB (3,3’-diaminobenzidina). -- Prueba NBT (nitro blue tetrazolio). -- Resultados y discusión. -- Eficiencia y seguimiento de transformación. -- Ensayo GUS. -- Ensayo GFP. -- Ensayos histoquímicos para detectar posible HR. -- Tinción DAB. -- Prueba NBT. -- Conclusiones. -- Apreciaciones finales. -- Recomendaciones. -- Productos. -- Bibliografía.spa
dc.format.extent101 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationSandoval Parra, Karen X. (2018). Estandarización de la expresión transitoria de proteínas de virulencia de Phytophthora Palmivora en hojas de palma de aceite [Trabajo de grado, Universidad de los Llanos]. Repositorio digital Universidad de los Llanos.spa
dc.identifier.instnameUniversidad de los Llanos
dc.identifier.reponameRepositorio digital Universidad de los Llanos
dc.identifier.urihttps://repositorio.unillanos.edu.co/handle/001/1465spa
dc.language.isospaspa
dc.publisherUniversidad de los Llanosspa
dc.publisher.facultyFacultad de Ciencias Básicas e Ingenieríaspa
dc.publisher.placeVillavicenciospa
dc.relation.referencesAbdullah, R., Zainal, A., Heng, W.Y., Li, L.C., Beng, Y.C., Phing, L.M., Sirajuddin, S.A., Ping, W.Y.S. & Joseph, J.L. (2005). Immature embryo: A useful tool for oil palm (Elaeis guineensis Jacq.) genetic transformation studies. Electronic Journal of Biotechnology, 18, 24-34
dc.relation.referencesAhlandsberg, S., Sathish, P., Sun, C., & Jansson, C. (2001). A set of useful monocotyledon transformation vectors. Biotechnology Letters, 23 (22), 1871– 1875.
dc.relation.referencesAltpeter, F., Baisakh, N., Beachy, R., Bock, R., Capell, T., Christou, P., Daniell, H., Datta, K., Datta, S., Philip, J., Dix, P., Fauque, C., Huang, N., Kohli, A., Mooibroek, H., Nicholson, L., Nguyen, T., Nugent, G., Raemakers, K., Romano, A., Somers, D., Stoger, E., Taylor, N., Visser, R. (2005). Particle bombardment and the genetic enhancement of crops: myths and realities. Molecular Breeding, 15, 305-327. http://doi.org/10.1007/s11032-004-8001-y.
dc.relation.referencesAlvarez, M.E., Pennell, R.I., Meijer, P.J., Ishikawa, A., Dixon, R.A., & Lamb, C. (1998). Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell, 92, 773–784.
dc.relation.referencesArias, D., González, M., Prada, F., Restrepo, E., & Romero, H. (2013). Morphoagronomic and molecular characterisation of oil palm Elaeis guineensis Jacq. material from Angola. Tree Genetics & Genomes, 9 (5), 1283–1294. http://doi.org/10.1007/s11295-013-0637-5.
dc.relation.referencesAriza, J.G., Sarria, G.A., Torres, G.A., Varón, F. y Martínez, G. (2008). Relación entre los síntomas externos y el avance interno de la lesión causada por la Pudrición del cogollo (PC) en palmas de vivero en Tumaco. Fitopatología Colombiana, 32 (2), 35-38.
dc.relation.referencesBahariah, B., Parveez, G.K.A., Yunus, A.M.M., Masura, S.S., Khalid, N., & Othman, R.Y. (2013). Biolistic transformation of oil palm using the phosphomannose isomerase (pmi) gene as a positive selectable marker. Biocatalysis and Agricultural Biotechnology, 2, 295–304. http://dx.doi.org/10.1016/j.bcab.2013.08.004.
dc.relation.referencesBasiron, Y. (2005). Palm Oil. Bailey’s Industrial Oil and Fat Products. John Wiley & Sons, Inc. http://doi.org/10.1002/047167849X.bio071.
dc.relation.referencesBaxter, A., Mittler, R., & Suzuki, N. (2014). ROS as key players in plant stress signaling. Journal of Experimental Botany, 65, 1229–1240.
dc.relation.referencesBelhaj, K., Cano, L.M., Prince, D.C., Kemen, A., Yoshida, K., Dagdas, Y.F., Etherington, G.J., Schoonbeek, H., van Esse, H.P., Jones, J.D.G., Kamoun, S., & Schornack, S. (2017). Arabidopsis late blight: infection of a nonhost plant by Albugo laibachii enables full colonization by Phytophthora infestans. Cellular Microbiology, 19(1), e12628. http://doi.org/ 10.1111/cmi.12628
dc.relation.referencesBenítez, É., & García, C. (2015). The history of research on oil palm bud rot (Elaeis guineensis Jacq.) in Colombia. Agronomía Colombiana, 32 (3), 390–398. http://doi.org/10.15446/agron.colomb.v32n3.46240.
dc.relation.referencesBernal N., F. (2001). El cultivo de la palma de aceite y su beneficio. Guía general para el nuevo palmicultor. Bogotá: Federación Nacional de Cultivadores de Palma de Aceite, Fedepalma, y Centro de Investigación en Palma de Aceite.
dc.relation.referencesBespalhok F., J.C., & Hattori, K. (1997). Embryogenic callus formation and histological studies from Stevia rebaudiana (BERT.) BERTONI floret explants. Revista Brasileira de Fisiologia Vegetal, 9(3), 185-188.
dc.relation.referencesBetancourth, C., Peña, E., & Reyes, R. (2011). Predicción y control de la cosecha en el híbrido interespecífico Elaeis oleifera x Elaeis guineensis en la zona palmera occidental de Colombia. Revista Corpoica, 12 (1).
dc.relation.referencesBos, J.I.B., Armstrong, M.R., Gilroy, E.M., Boevink, P.C., Hein, I., Taylor, R.M., Zhendong, T., Engelhardt, S., Vetukuri, R.R., Harrower, B., Dixelius, C., Bryan, G., Sadanandom, A., Whisson, S.C., Kamoun, S., & Birch, P.R.J. (2010). Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proceeding of the National Academy of Sciences U.S.A., 107 (21), 9909–9914. http://doi: 10.1073/pnas.0914408107.
dc.relation.referencesCarter, C., Finley, W., Fry, J., Jackson, D., & Willis, L. (2007). Palm oil markets and future supply. European Journal of Lipid Science and Technology, 109, 307– 314. http://doi.org/10.1002/ejlt.200600256.
dc.relation.referencesCatanzariti, A.M., Dodds, P.N., & Ellis, J.G. (2007). Avirulence proteins from haustoria-forming pathogens. Federation of European Microbiological Societies (FEMS) Microbiology Letters, 269, 181–188.
dc.relation.referencesChalfie, M., Euskirchen, G., Ward, W.W., & Prasher, D.C. (1994). Green fluorescent protein as a marker for gene expression. Science, 263, 802-805.
dc.relation.referencesChavez, M., Valadez, M., Carrillo, G., & Lozoya, G. (2002). Expresión transitoria del gen de la β-Glucuronidasa y efecto del bombardeo en tejido de crisantemo (Dendrathema grandiflorum). Horticultura, 8 (1), 107-121.
dc.relation.referencesChowdhury, M. K. U. , Parveez G. K. A., & Saleh, N.M. (1997). Evaluation of five promoters for use in transformation of oil palm (Elaeis guineensis Jacq.). Plant Cell Reports, 16, 277-281
dc.relation.referencesChristen, J., & Hohl, H.R. (1972). Growth and ultrastructural differentiation of sporangia in Phytophthova palmivova. Canadian Journal of Microbiology, 18, 1959-1964.
dc.relation.referencesConnett, M., Tran, T., Jefferson, R., & Kilian, A. (2006). Transactivation lines in rice evaluation of insertional mutants and development of effective transactivator platform for FTO and co-ordinate gene expression. A report for the Rural Industries Research and Development Corporation.
dc.relation.referencesDangl, J.L., & Jones, J.D.G. (2001). Plant pathogens and integrated defence responses to infection. Nature, 411, 826–833
dc.relation.referencesDaudi, A., Cheng, Z., O’Brien, J.A., Mammarella, N., Khan, S., Ausubel, F.M., & Bolwella, G.P. (2012). The Apoplastic Oxidative Burst Peroxidase in Arabidopsis Is a Major Component of Pattern-Triggered Immunity. The Plant Cell, 24, 275–287.
dc.relation.referencesDaudi, A., & O’Brien, J. A. (2012). Detection of Hydrogen Peroxide by DAB Staining in Arabidopsis Leaves. Bio-protocol, 2(18), 263. http://doi.org/10.21769/BioProtoc.263.
dc.relation.referencesDeslandes, L., & Rivas, S. (2012). Catch me if you can: bacterial effectors and plant targets. Trends in Plant Science, 17 (11), 644–55. http://doi.org/10.1016/j.tplants.2012.06.011
dc.relation.referencesDíaz G., C., & Chaparro-Giraldo, A. (2012). Métodos de transformación genética de plantas. Revista U.D.C.A Actualidad & Divulgación Científica, 15(1), 49-61. Retrieved October 23, 2017, from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123- 42262012000100007&lng=en&tlng=es.
dc.relation.referencesDodds, P.N., & Rathjen, J.P. (2010). Plant immunity: towards an integrated view of plant–pathogen interactions. Nature Reviews Genetics, 11, 539–548.
dc.relation.referencesDoke, N. (1983). Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal wall components of Phytopthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiological Plant Pathology, 23, 359–367
dc.relation.referencesDou, D., Kale, S.D., Wang, X., Chen, Y., Wang, Q., Wang, X., Jiang, R.H.Y., Arredondo, F.D., Anderson, R.G., Thakur, P.B., McDowell, J.M., Wang, Y., & Tyler, B. M. (2008a). Conserved C-terminal motifs required for avirulence and suppression of cell death by Phytophthora sojae effector Avr1b. The Plant Cell, 20 (April), 1118–1133. http://doi.org/10.1105/tpc.107.057067.
dc.relation.referencesDou, D., Kale, S.D., Wang, X., Jiang, R.H., Bruce, N.A., Arredondo, F.D., Zhang, X., & Tyler, B.M. (2008b). RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery. The Plant Cell, 20, 1930–1947. http://dx.doi.org/10.1105/tpc.107.056093.
dc.relation.referencesDrenth, A., & Sendall, B. (2001). Practical guide to detection and identificaction of Phytophthora. Brisbane (Australia): CRA for Tropical Plant Protection. 41p.
dc.relation.referencesDrenth, A., Torres, G. A., & Martínez, G. (2013). Pudrición del cogollo en la palma de aceite. Palmas, 34, 87–94.
dc.relation.referencesDu, J., & Vleeshouwers, V.G.A.A. (2014). The do’s and don’ts of effectoromics. En: Birch, P., Jones, J., & Bos, J. (eds), Plant-Pathogen Interactions. Methods in Molecular Biology (Methods and Protocols), vol. 1127. Humana Press, Totowa, NJ.
dc.relation.referencesElliott, M.L., & Uchida, J.Y. (2004). Diseases and disorders of ornamental palms. En Elliott, M.L., Broschat, T.K., Uchida, J.Y., & Simone, G.W. (eds.), Compedium of Ornamental Palm Diseases and Disordes, American Phytopathological Society (APS Press). http://doi.org/10.1094/APSnetFeature-2004-0304.
dc.relation.referencesErwin, D.C., & Ribeiro, O.K. (1996). Phytophthora Diseases Worldwide. St Paul, Minesota: The American Phytopathological Society
dc.relation.referencesEvangelisti, E., Gogleva, A., Hainaux, T., Doumane, M., Tulin, F., Quan, C., Yunusov, T., Floch, K., & Schornack, S. (2017). Time-resolved dual transcriptomics reveal early induced Nicotiana benthamiana root genes and conserved infection-promoting Phytophthora palmivora effectors. BMC Biology, 15 (39), 1-24.
dc.relation.referencesFawke, S., Doumane, M., & Schornack, S. (2015). Oomycete Interactions with Plants: Infection Strategies and Resistance Principles. Microbiology and Molecular Biology Reviews, 79 (3), 263-280. DOI 10.1186/s12915-017-0379-1.
dc.relation.referencesGharanjik, S., Moieni, A., Mousavi, A., & Alizadeh, H. (2008). Optimization of transient expression of uidA gene in androgenic embryos of wheat (Triticum aestivum L. cv. Falat) via particle bombardment. Iranian Journal of Biotechnology, 6 (4), 207-213.
dc.relation.referencesGlazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review Phytopathology, 43, 205–227.
dc.relation.referencesGrellet-Bournonville, C.F., & Díaz-Ricci, J.C. (2011). Quantitative determination of superoxide in plant leaves using a modified NBT staining method. Phytochemical Analysis, 22, 268–271. DOI 10.1002/pca.1275.
dc.relation.referencesHe, P., Shan, L., & Sheen, J. (2007). Elicitation and suppression of microbeassociated molecular pattern-triggered immunity in plant-microbe interactions. Cellular Microbiology, 9, 1385–1396. http://doi.org/10.1111/j.1462- 5822.2007.00944.x.
dc.relation.referencesHeim, R., Prasher, D.C., & Tsien, R.Y. (1994). Wavelength mutation and posttranslational modification of green fluorescent protein. Proceedings of the National Academy of Sciences USA, 91, 12501-12504.
dc.relation.referencesHelenius, E., Boije, M., Niklander, T., Tapio, P., & Teeri, T. (2000). Gene delivery into intact plants using the Helios™ Gene Gun. Plant Molecular Biology Reporter, 18, 2870–2871.
dc.relation.referencesHenry, G., Thonart, P., Ongena, M. (2012). PAMPs, MAMPs, DAMPs and others: an update on the diversity of plant immunity elicitors. Biotechnology, Agronomy, Society and Environment, 16, 257–268.
dc.relation.referencesHu, C.Y., Chee, P.P., Chesney, R.H., Zhou, J.H., & Miller, P.D. (1990). Intrinsic GUS-like activities in seed plants. Plant Cell Reports, 9, 1–5.
dc.relation.referencesHückelhoven, R., & Kogel K. H. (1998). Tissue-specific superoxide generation at interaction sites in resistant and susceptible near-isogenic barley lines attacked by the powdery mildew fungus (Erysiphe graminis f. sp. hordei). Molecular Plant-Microbe Interactions, 11 (4), 292–300.
dc.relation.referencesIzawati, A.M.D., Parveez, G.K.A. & Masani, M.Y.A. (2009). Transformation of oil palm using Agrobacterium tumefaciens. Journal oil palm research, 21, 643-652.
dc.relation.referencesJabs, T., Dietrich, R.A., & Dangl, J.L. (1996). Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science, 273, 1853–1856.
dc.relation.referencesJabs, T., Tschöpe, M., Colling, C., Hahlbrock, K., & Scheel, D. (1997). Elicitor stimulated ion fluxes and O2- from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proceedings of the National Academy of Sciences U.S.A., 94, 4800-4805.
dc.relation.referencesJamir, Y., Guo, M., Oh, H., Petnicki-ocwieja, T., Chen, S., & Tang, X. (2004). Identication of Pseudomonas syringae type III effectors that can suppress programmed cell death in plants and yeast. The Plant Journal, 37, 554–565. http://doi.org/10.1046/j.1365-313X.2003.01982.x
dc.relation.referencesJefferson, R.A., Kavanagh, T.A., & Bevan, M.W. (1987). GUS fusions: βglucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6 (13), 3901-3907.
dc.relation.referencesJones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444 (November), 323–329. https://doi.org/10.1038/nature05286
dc.relation.referencesKale, S. D., & Tyler, B. M. (2011). Assaying effector function in planta using doublebarreled particle bombardment. En McDowell J.M. (ed.), Plant Immunity: Methods and Protocols, Methods in Molecular Biology, 712, 153–172, Springer. http://doi.org/10.1007/978-1-61737-998-7_13.
dc.relation.referencesKamoun, S. (2007). Groovy times: Filamentous pathogen effectors revealed. Current Opinion Plant Biology, 10, 358–365.
dc.relation.referencesKamoun, S., Segretin, M. E., & Schornack, S. (2012). Late blight resistance genes. En: Google Patents.
dc.relation.referencesKanchanapoom, K., Nakkaew, A., Kanchanapoom K., & Phongdara, A. (2008). Determination of the most efficient target tissue and helium pressure for biolistic transformation of oil palm (Elaeis guineensis Jacq.). Songklanakarin Journal of Science and Technology, 30 (2), 153-157.
dc.relation.referencesKikkert, J.R. (1993). The Biolistic PDS-1000/He device. Plant Cell, Tissue and Organ Culture, 33, 221-226.
dc.relation.referencesKlein, T.M., Goff, S.A., Roth, B.A., & Fromm, M.E. (1990). Applications of the Particle Gun in Plant Biology. En: Nijkamp, H.J.J., vanderPlas, L.H.W., & van Aartrijk, J. (eds.), Progress in Plant Cellular and Molecular Biology, Kluwer Academic Publishers, The Netherlands, 56-66
dc.relation.referencesKuriakose, B., Du Toit, E.S., & Jordaan, A. (2012). Transient gene expression assays in rose tissues using a Bio-Rad Helios® hand-held gene gun. South African Journal of Botany, 78, 307-311. https://doi.org/10.1016/j.sajb.2011.06.002
dc.relation.referencesLaukkanen, H., Rautiainen, L., Taulavuori, E., & Hohtola, A. (2000). Changes in cellular structures and enzymatic activities during browning of Scots pine callus derived from mature buds. Tree Physiology, 20, 467–475.
dc.relation.referencesLee, M.P., Yeun, L.H. & Abdullah, R. (2006). Expression of Bacillus thuringiensis insecticidal protein gene in transgenic oil palm. Electronic Journal of Biotechnology, 9, 117-126.
dc.relation.referencesLevine, A., Tenhaken, R., Dixon, R., & Lamb, C.J. (1994). H2O2 from the oxidative burst orchestrates the plant hypersensitive response. Cell, 79, 583-593.
dc.relation.referencesLiu, Y., Ren, D., Pike, S., Pallardy, S., Gassmann, W., & Zhang, S. (2007). Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. The Plant Journal, 51, 941–954. doi: 10.1111/j.1365- 313X.2007.03191.x.
dc.relation.referencesLoeb, T.A., Reynolds, T.L. (1994). Transient expression of the uidA gene in pollen embryoids of wheat following microprojectile bombardment. Plant Science, 104: 81-91.
dc.relation.referencesLópez-López, K., Rodríguez-Mora, D., & Vaca-Vaca, J. (2013). Optimización de las condiciones de inoculación por biobalística de un Begomovirus en tomate y tabaco. Revista Colombiana de Biotecnología, XV (2), 8-17.
dc.relation.referencesLu, S., Gu, H., Yuan, X., Wang, X., Wu, A.M., Qu, L., & Liu, J. (2007). The GUS reporter-aided analysis of the promoter activities of a rice metallothionein gene reveals different regulatory regions for tissue-specific and inducible expression in transgenic Arabidopsis. Transgenic Research, 16, 177–191.
dc.relation.referencesMajid, N.A., & Parveez, G.K.A. (2007). Evaluation of green fluorescence protein (GFP) as a selectable marker for oil Palm transformation via transient expression. Asia Pacific Journal of Molecular Biology and Biotechnology, 15, 1- 8.
dc.relation.referencesMajid, N.A., & Parveez, G.K.A. (2016). Regeneration of transgenic oil palm carrying GFP gene used as a visual selectable marker. Journal of Oil Palm Research, 28, 4, 415-430.
dc.relation.referencesMann, D. G. J., LaFayette, P. R., Abercrombie, L. L., King, Z. R., Mazarei, M., Halter, M. C., Poovaiah, C. R., Baxter, H., Shen, H., Dixon, R. A., Parrott, W. A., & Stewart Jr, C. N. (2012). Gateway-compatible vectors for high-throughput gene functional analysis in switchgrass (Panicum virgatum L.) and other monocot species. Plant Biotechnology Journal, 10, 226–236.
dc.relation.referencesMartínez, G. (2009). Identificación temprana y manejo integrado de la enfermedad Pudrición del cogollo. Palmas, 30 (2), 63–77.
dc.relation.referencesMartínez, G., Sarria, G. A., Torres, G. A., & Varón, F. (2010). Phytophthora palmivora es el agente causal de la Pudrición del Cogollo de la palma de aceite. Palmas, 31, 334–344.
dc.relation.referencesMariani, T.S., Ermavitalini, D., Mitsutaka, T., Chia, T.F., & Miyake, H. (2015). GUS gene expression in somatic embryo of oil palm (Elaeis guineensis Jacq.). Asian Journal of Applied Sciences, 3 (5), 649-650.
dc.relation.referencesMasani, M.Y.A. (2013). Development of a protoplast-based transformation system for genetic engineering of oil palm. Tesis de maestría. Universidad Técnica de Aquisgrán, Aquisgrán, Alemania
dc.relation.referencesMasura, S.S., Parveez, G.K.A., & Ismail, I. (2010). Isolation and characterization of oil palm constitutive promoter derived from ubiquitin extension protein (uep1) gene. New Biotechnology, 27 (4), 289-299.
dc.relation.referencesMasura, S.S., Parveez, G.K.A., & Low E. T., L. (2011). Isolation and characterization of an oil palm constitutive promoter derived from a translationally control tumor protein (TCTP) gene. Plant Physiology and Biochemistry, 49, 701-708.
dc.relation.referencesMayes, S., Jack, P.L., Marshall, D. F., & Corley, R.H.V. (1997). Construction of a RFLP genetic linkage map for oil palm (Elaeis guineensis Jacq.). Genome, 40, 116-122. (Julio, 2017). http://doi.org/10.1139/g97-016.
dc.relation.referencesMcCabe, D., & Christou, P. (1993). Direct DNA transfer using electric discharge particle acceleration (ACCELL TM technology). Plant Cell, Tissue and Organ Culture, 33, 227-236.
dc.relation.referencesMehrotra, S., & Goyal, V. (2012). Agrobacterium-mediated gene transfer in plants and biosafety considerations. Applied Biochemical Biotechnology, 168, 1953– 1975. DOI 10.1007/s12010-012-9910-6.
dc.relation.referencesMeunier, J. (1991). Una posible solución genética para el control de la pudrición de cogollo en la palma aceitera. Palmas, 12 (2), 39–42.
dc.relation.referencesMorel, J., & Dangl, J. L. (1997). The hypersensitive response and the induction of cell death in plants. Cell Death & Differentiation, 4, 671–683. http://doi.org/ 10.1038/sj.cdd.4400309.
dc.relation.referencesMousavi, M., Mousavi, A., Habashi, A.A., & Dehsara, B. (2014). Genetic transformation of date palm (Phoenix dactylifera L. cv. ‘Estamaran’) via particle bombardment. Molecular Biology Reports. DOI: 10.1007/s11033-014-3720-6.
dc.relation.referencesMurphy, D.J. (2003). Working to improve the oil palm crop. Inform International News on Fats, Oiland Relate Materials, 14 (11), 670-671.
dc.relation.referencesNagy, N.E., Franceschi, V.R., Kvaalen, H., & Solheim, H. (2005). Callus cultures and bark from Norway spruce clones show similar cellular features and relative resistance to fungal pathogens. Trees, 19, 694–702. DOI 10.1007/s00468-005- 0433-4.
dc.relation.referencesOgita, S. (2005). Callus and cell suspension culture of bamboo plant, Phyllostachys nigra. Plant Biotechnology, 22 (2), 119–125.
dc.relation.referencesOh, S., Young, C., Lee, M., Oliva, R., Bozkurt, T.O., Cano, L.M., Win, J., Bos, J.I.B., Liu, H., van Damme, M., Morgan, W., Choi, D., Van der Vossen, E.A.G., Vleeshouwers, V.G.A.A., & Kamouna, S. (2009). In planta expression screens of Phytophthora infestans RXLR effectors reveal diverse phenotypes, including activation of the Solanum bulbocastanum disease resistance protein Rpi-blb2. The Plant Cell, 21, 2928–2947.
dc.relation.referencesOmidvar, V., Siti Nor Akmar, A., Marziah, M., & Maheran, A. A. (2008). A transient assay to evaluate the expression of polyhydroxybutyrate genes regulated by oil palm mesocarp-specific promoter. Plant Cell Rep, 27, 1451–1459. http://doi.org/10.1007/s00299-008-0565-2.
dc.relation.referencesPais, M., Win, J., Yoshida, K., Etherington, G. J., Cano, L. M., Raffaele, S., Banfield, M.J., Jones, A., Kamoun, S., & Saunders, D. G. O. (2013). From pathogen genomes to host plant processes : the power of plant parasitic oomycetes. Genome Biology, 14, 211, 1–10.
dc.relation.referencesParveez, G.K.A. (2000). Production of transgenic oil palm (Elaeis guineensis Jacq.) using biolistic techniques. En: Jain, S.M., & Minocha, S.D. (eds.), Molecular Biology of Woody Plants, Kluwer Academic Publishers, Dordrecht, The Netherlands, 327-350.
dc.relation.referencesParveez, G.K.A., & Majid, N.A. (2008). Factors affecting green fluorescence protein (GFP) gene expression in oil palm after microprojectile bombardment mediated transformation. Journal of Oil Palm Research, 20, 495-507.
dc.relation.referencesParveez, G.K.A., & Bahariah, B. (2012). Biolistic-mediated production of transgenic oil palm. En: Dunwell, J.M., & Wetten, A.C. (eds.), Transgenic Plants: Methods in Molecular Biology (Methods and Protocols), vol. 847, Humana Press. https://doi.org/10.1007/978-1-61779-558-9_14.
dc.relation.referencesParveez, G.K.A, Chowdhury, M.K.U., & Salehb N.M. (1997). Physical parameters affecting transient GUS gene expression in oil palm (Elaeis guineensis Jacq.) using the biolistic device. Industrial Crops and Products, 6, 41-50
dc.relation.referencesParveez, G.K.A., Masri, M.M., Zainal, A., Majid, N.A., Yunus, A.M.M., Fadilah, H.H., Rasid, O., & Cheah, S. (2000) Transgenic oil palm : production and projection. Biochemical Society Transactions, 28 (6), 969-971.
dc.relation.referencesPeixe, A., Barroso, J., Potes, A., & Pais, M.S. (2004). Induction of haploid morphogenic calluses from in vitro cultured anthers of Prunus armeniaca cv. ‘Harcot’. Plant Cell, Tissue and Organ Culture, 77, 35–41.
dc.relation.referencesPico, G. (2015). Caracterización de la respuesta de Elaeis guineensis Jacq a Phytophthora palmivora por métodos microscópicos y bioquímicos (Tesis de pregrado). Universidad Industrial de Santander, Bucaramanga, Santander.
dc.relation.referencesPonappa, T., Brzozowski, A.E., & Finer, J.J. (2000). Transient expression and stable transformation of soybean using jellyfish green fluorescent protein (GFP). Plant Cell Reports, 19, 6-12
dc.relation.referencesPotrykus, I. (1991). Gene transfer to plants—assessment of published approaches and results. Annual Review of Plant Physiology and Plant Molecular Biology, 42, 205–225.
dc.relation.referencesProtocolo operativo estandarizado. POE-Histoquímicas para discos de hoja de foliolos de palma V1. Cenipalma.
dc.relation.referencesPulido-Rendón, A.J. (2014). Evaluación transitoria del promotor del gen de la proteína de la capside del virus del mosaico de la papa (PYMV) – Colombia en plantas de tabaco. Tesis de maestría, Universidad Nacional de Colombia, Sede Palmira
dc.relation.referencesQutob, D., Kamoun, S., & Gijzen, M. (2002). Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy. The Plant Journal, 32, 361–373.
dc.relation.referencesRandall, T.A., Dwyer, R.A., Huitema, E., Beyer, K., Cvitanich, C., Kelkar, H., Fong, A.M., Gates, K., Roberts, S., Yatzkan, E., Gaffney, T., Law, M., Testa, A., TortoAlalibo, T., Zhang, M., Zheng, L., Mueller, E., Windass, J., Binder, A., Birch, P.R., Gisi, U., Govers, F., Gow, N.A., Mauch, F., van West, P., Waugh, M.E., Yu, J., Boller, T., Kamoun, S., Lam, S.T., & Judelson, H.S. (2005). Large-scale gene discovery in the oomycete Phytophthora infestans reveals likely components of phytopathogenicity shared with true fungi. Molecular PlantMicrobe Interactions, 18 (3), 229-43.
dc.relation.referencesRao, A.Q., Bakhsh, A., Kiani, S., Shahzad, K., Shahid, A.A., Husnain, T., Riazuddin S. (2009). The myth of plant transformation. Biotechnology Advances, 27, 753– 763.
dc.relation.referencesRen, D., Yang, H., & Zhang, S. (2002). Cell death mediated by mitogen-activated protein kinase pathway is associated with the generation of hydrogen peroxide in Arabidopsis. Journal of Biology & Chemistry, 277, 559–565.
dc.relation.referencesRuíz-Medrano, R., Guevara-Gonzáles, R., Arguello-Astorga, G., MonsalveFonnegra, Z., Herrera-Estrella, L., & Rivera-Bustamante, R. (1999). Identification of a sequence element involved in AC2-mediated transactivation of the pepper huasteco virus coat protein gene. Virology, 253, 162- 169.
dc.relation.referencesRussell, J.A., Roy, M.K., & Sanford, J.C. (1992). Physical trauma and tungsten toxicity reduce the efficiency of biolistic transformation. Plant Physiology, 98, 1050-1056.
dc.relation.referencesSalazar, S.M., Castagnaro, A.P., Arias, M.E., Chalfoun, N., Tonello, U., Díaz-Ricci, J.C. (2006). Induction of a defense response in strawberry mediated by an avirulent strain of Colletotrichum. European Journal of Plant Pathology, 117, 109–122.
dc.relation.referencesSanford, J.C., Klein, T.M., Wolf, E.D., & Allen, N. (1987) Delivery of substances into cells and tissues using a particle bombardment process. Particulate Science and Technology: An International Journal, 5 (1), 27-37, http://doi.org/10.1080/02726358708904533
dc.relation.referencesSarria, G.A., Torres, G.A., Aya, H.A., Ariza, J.G., Rodríguez, J., Vélez, D.C., Varón, F., & Martínez, G. (2008). Phytophthora sp . es el responsable de las lesiones iniciales de la Pudrición del Cogollo (PC) de la palma de aceite en Colombia. Palmas, 29, 31–41.
dc.relation.referencesSchopke, C., Taylor, N.J., Carcamo, R., & Beachy, R.N. (1997). Optimization of parameters for particle bombardment of embryogenic suspension cultures of cassava (Manihot esculenta Crantz) using computer image analysis. Plant Cell Reports, 16, 526-530.
dc.relation.referencesSchornack, S. (2016). Nuevas estrategias para el control de enfermedades de la palma de aceite mediante la investigación de patógenos de la planta. Palmas, 37 (Especial Tomo I), 119-122.
dc.relation.referencesShirasu, K., Nakajima, H., Rajasekhar, V.K., Dixon, R.A., & Lamb, C.J. (1997). Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell, 9, 261– 270.
dc.relation.referencesŠnyrychová, I., Ayaydin, F., & Hideg, É. (2009). Detecting hydrogen peroxide in leaves in vivo – a comparison of methods. Physiologia Plantarum, 135, 1-18.
dc.relation.referencesTalbot, N.J. (2003). On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea. Annual Review of Microbiology, 57, 177–202.
dc.relation.referencesThomasset, B., Ménard, M., Boetti, H., Denmat, L.A., Inzé, D., & Thomas, D. (1996). β-Glucuronidase activity in transgenic and non-transgenic tobacco cells: specific elimination of plant inhibitors and minimization of endogenous GUS background. Plant Science, 113, 209–219.
dc.relation.referencesThordal-Christensen, H. (2003). Fresh insight into processes of nonhost resistance. Current Opinion Plant Biology, 6, 351–357.
dc.relation.referencesThordal-Christensen, H., Zhang, Z., Wei, Y., & Collinge, D.B. (1997). Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. The Plant Journal, 11, 1187–1194.
dc.relation.referencesTorres, G.A., Sarria, G.A., Martínez, G., Varón, F., Drenth, A., & Guest, D.I. (2016). Bud rot caused by Phytophthora palmivora: A destructive emerging disease of oil palm. Phytopathology, 106, 320-329.
dc.relation.referencesTorres, G. A., Sarria, G. A., Varon, F., Coffey, M. D., Elliott, M. L., & Martinez, G. (2010). First report of bud rot caused by Phytophthora palmivora on african oil palm in Colombia. Plant Disease, 94 (9), 1163. http://doi.org/10.1094/PDIS-94- 9-1163A.
dc.relation.referencesTorres, M.A., Dangl, J.L., & Jones, J.D.G. (2002). Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proceedings of the National Academy of Sciences USA, 99 (1), 517–522. www.pnas.orgcgidoi10.1073pnas.012452499.
dc.relation.referencesUma, B., & Podile, A.R. (2015). Apoplastic oxidative defenses during non-host interactions of tomato (Lycopersicon esculentum L.) with Magnaporthe grisea. Acta Physiologiae Plantae, 37 (26) 1-10. http://doi.org/10.1007/s11738-015- 1779-x.
dc.relation.referencesvan der Hoorn, R & Kamoun, S. (2008). From Guard to Decoy: A New Model for Perception of Plant Pathogen Effectors. The Plant Cell, 20 (8) 1-10 https://doi.org/10.1105/tpc.108.060194. V
dc.relation.referencesVain, P., Worland, B., Kohli, A., Snape, J.W., & Christou, P. (2000). Green fluorescent protein (GFP) as a vital screenable marker in rice transformation. Theorical and Applied Genetics, 9, 164-169.
dc.relation.referencesValerio, R., & García, E. (2008). Transformación genética de plátano (Musa sp. cv. hartón) mediante biobalística aplicada a tejidos meristemáticos. Interciencia, 33 (3), 225 – 231
dc.relation.referencesVitha, S., Beneš, K., Phillips, J., & Gartland, K. (1995). Histochemical localization of β- Glucuronidase (GUS) reporter activity in plant tissues. Methods in Molecular Biology, 44, 185 – 193.
dc.relation.referencesVleeshouwers, V. G. A. A., & Oliver, R. P. (2014). Effectors as tools in disease resistance breeding against biotrophic , hemibiotrophic , and necrotrophic plant pathogens. Molecular Plant-Microbe Interactions, 27 (3), 196–206. http://dx.doi.org/10.1094/MPMI-10-13-0313-IA.
dc.relation.referencesVleeshouwers, V. G. A. A., Rietman, H., Krenek, P., Champouret, N., Oh, S., Wang, M., Bouwmeester, K., Vosman, B., Visser, R.G.F., Jacobsen, E., Govers, F., Kamoun, S., Van der Vossen, E. A. G. (2008). Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS ONE (www.plosone.org), 3 (8), e2875, 1-10. http://doi.org/10.1371/journal.pone.0002875.
dc.relation.referencesWahid, M. B., Nor, S., Abdullah, A., & Henson, I. E. (2004). Oil Palm – Achievements and Potential. "New directions for a diverse planet". 4th International Crop Science Congress, October 2004, Brisbane, Australia. Web site www.cropscience.org.au
dc.relation.referencesWang, Y., & Huang, Q. (2011). Assays for effector-mediated suppression of programmed cell death in yeast. En McDowell J.M. (ed.), Plant Immunity: Methods and Protocols, Methods in Molecular Biology, 712, 173–180, Springer. http://doi.org/10.1007/978-1-61737-998-7_14
dc.relation.referencesWang, C-H., Huang, L-L., Buchenauer, H., Han, Q-M., Zhang, H-C., & Kang, Z-S. (2007). Histochemical studies on the accumulation of reactive oxygen species (O2- and H2O2) in the incompatible and compatible interaction of wheat - Puccinia striiformis f. sp. tritici. Physiological and Molecular Plant Pathology, 71, 230–239.
dc.relation.referencesWang, C-H., Huang, L-L., Zhang, H-C., Han, Q-M., Buchenauer, H., & Kang, Z-S. (2010). Cytochemical localization of reactive oxygen species (O2- and H2O2) and peroxidase in the incompatible and compatible interaction of wheat - Puccinia striiformis f. sp. tritici. Physiological and Molecular Plant Pathology, 74, 221-229.
dc.relation.referencesWeßling, R., Epple, P., Altmann, S., He, Y., Yang, L., Henz, S.R., McDonald, N., Wiley, K., Bader, K.C., Gläßer, C., Mukhtar, M.S., Haigis, S., Ghamsari, L., Stephens, A.E., Ecker, J.R., Vidal, M. Jones, J.D.G., Mayer, K.F.X., van Themaat, E.V.L., Weigel, D., Schulze-Lefert, P., Dangl, J.L., Panstruga, R.,& Braun, P. (2014). Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host & Microbe, 16, 364– 375. http://dx.doi.org/10.1016/j.chom.2014.08.004.
dc.relation.referencesWin, J., Chaparro-Garcia, A., Belhaj, K., Saunders, D.G.O., Yoshida, K., Dong, S., Schornack, S., Zipfel, C., Robatzek, S., Hogenhout, S.A., & Kamoun, S. (2012). Effector biology of plant-associated organisms: concepts and perspectives. Cold Spring Harbor Symposia on Quantitative Biology, 77, 235–247. http://doi.org/10.1101/sqb.2012.77.015933.
dc.relation.referencesWhisson, S. C., Boevink, P. C., Moleleki, L., Avrova, A. O., Morales, J. G., Gilroy, E. M., Armstrong, M.R., Grouffaud, S., van West, P., Chapman, S., Hein, I., Toth, I.K., Pritchard, L., & Birch, P.R.J. (2007). A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature, 450 (November), 115– 118. http://doi.org/10.1038/nature06203.
dc.relation.referencesWojtaszek, P. (1997). Oxidative burst: an early plant response to pathogen infection. Biochemical Journal, 322, 681-92.
dc.relation.referencesZainal, A., & Abdullah, R. (1996). Transformation of oil palm (Elaeis guineensis J.) immature embryos by particle bombardment. Second National Congress on Genetics, 13-15/11/1996, Genetics Society of Malaysia.
dc.relation.referencesZhang, H., Wang, C., Cheng, Y., Wang, X., Li, F., Han, Q., Xu, J., Chen, X., Huang, L., Wei, G., & Kang, Z. (2011). Histological and molecular studies of the nonhost interaction between wheat and Uromyces fabae. Planta, 234, 979–991. http://doi.org/10.1007/s00425-011-1453-5.
dc.relation.referencesZipfel, C. (2008). Pattern-recognition receptors in plant innate immunity. Current Opinion Immunology, 20, 10–16
dc.relation.referencesZubaidah, R., & Siti Nor Akmar, A. (2003). Development of a transient promoter assay system for oil palm. Journal of Oil Palm Research, 15 (2), 62-69.
dc.relation.referencesZuraida, A.R., Rahiniza, K., Nurul, M.R., Suri, R., Zamri, Z., & Sreeramanan, S. (2010). Factors affecting delivery and transient expression of gusA gene in Malaysian indica rice MR 219 callus via biolistic gun system. African Journal of Biotechnology, 9 (51), 8810-8819. DOI: 10.5897/AJB10.1467.
dc.rightsDerechos Reservados - Universidad de los Llanos, 2018spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.proposalBiobalísticaspa
dc.subject.proposalPalma de aceitespa
dc.subject.proposalPudrición del Cogollospa
dc.subject.proposalERO (ROS)spa
dc.subject.proposalEfectoresspa
dc.subject.proposalPhytophthora palmivoraeng
dc.titleEstandarización de la expresión transitoria de proteínas de virulencia de Phytophthora Palmivora en hojas de palma de aceitespa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication

Archivos

Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Trabajo de grado
Tamaño:
4.54 MB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
Carta de autorización
Tamaño:
398.01 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
414 B
Formato:
Item-specific license agreed upon to submission
Descripción: