Publicación: Programación fetal en el desempeño productivo del ganado de carne
dc.contributor.advisor | Fuentes Reyes, Edgar Edilberto | |
dc.contributor.author | Rodríguez Mora, Eliana Marcela | |
dc.date.accessioned | 2023-11-08T16:25:46Z | |
dc.date.available | 2023-11-08T16:25:46Z | |
dc.date.issued | 2019 | |
dc.description | Gráficos | spa |
dc.description.abstract | La salud y el desarrollo postnatal pueden verse influenciados por los eventos que ocurren en el útero, este concepto dio origen a lo que hoy en día se reconoce como programación fetal. Esta reconoce que estímulos durante momentos críticos de la gestación incluida la nutrición, alteran la trayectoria de desarrollo del feto (Du et al., 2015), produciendo cambios permanentes en la estructura y función del organismo en desarrollo, con el resultado de efectos persistentes que pueden observarse en las siguientes generaciones. La programación fetal esta mediada por alteraciones estables y heredables de la expresión génica a través de modificaciones epigenéticas. Investigaciones en el campo de la producción animal han evidenciado que pequeñas diferencias en la nutrición durante la gestación pueden alterar la eficiencia de la producción de crías de por vida. Por lo tanto, el potencial para la programación fetal se debe considerar al determinar las estrategias nutricionales durante la gestación. Por este motivo se recopila información actualizada sobre los impactos de la nutrición materna sobre el desarrollo fetal en el ganado de carne y el rendimiento productivo en edad adulta. | spa |
dc.description.abstract | The concept that health and postnatal development can be influenced by events that occur in the womb, gave rise to what is nowadays recognized as fetal programming. This recognizes that stimuli during critical moments of pregnancy including nutrition, alter the development trajectory of the fetus (Du et al., 2015), producing permanent changes in the structure and function of the developing organism, with the result of persistent effects that can be observed in the following generations. Fetal programming is mediated by stable and inheritable alterations of gene expression through epigenetic modifications. Research in the field of animal production has shown that small differences in nutrition during pregnancy can alter the efficiency of the production of young for life. Therefore, the potential for fetal programming should be considered when determining nutritional strategies during pregnancy. For this reason, updated information is collect on the challenges of maternal nutrition on fetal development in beef cattle and productive performance adult life. | eng |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Medico(a) Veterinario(a) Zootecnista | spa |
dc.description.program | Medicina Veterinaria y Zootecnia | spa |
dc.description.tableofcontents | Resumen. -- Abstract. -- Objetivos. -- Objetivo general. -- Objetivos específicos. -- Introducción. -- Justificación. -- Estado del arte. -- Hipótesis de Barker. -- Programación fetal - programación del desarrollo. -- Concepto. -- Modelos animales en la programación del desarrollo fetal. -- Impacto de la nutrición en la programación del Desarrollo fetal. -- Nutrición materna. -- Factores que influyen en la necesidad y partición de nutrientes. -- Mal nutrición materna. -- Programación del desarrollo placentario. -- Placentación. -- Circulación placentaria, crecimiento y desarrollo. -- Nutrición materna en el desarrollo y función placentaria. -- Nutrición materna en la programación del desarrollo fetal. -- Crecimiento fetal. -- Nutrición materna en el desarrollo del tracto gastrointestinal del feto. -- Epigenética. -- Concepto. -- Procesos epigenéticos. -- Mecanismos epigenéticos. -- Nutrición materna en los mecanismos epigenéticos. -- Nutrición materna en la programación fetal del musculo esquelético y tejido adiposo. -- Importancia de la programación fetal en el músculo esquelético, tejido adiposo y tejido conectivo. -- Programación fetal del musculo esquelético. -- Programación fetal del tejido adiposo y conectivo. -- Impacto de la programación fetal en la función reproductiva. -- Desarrollo gonadal. -- Programación fetal y rendimiento postnatal de las crías. -- Impacto de la programación fetal en el desarrollo postnatal del tejido musculo esquelético. -- Impacto de la nutrición materna en el desempeño reproductivo de la Descendencia. -- Implicaciones económicas. -- Análisis y discusión. -- Conclusiones. -- Recomendaciones. -- Bibliografía. | spa |
dc.format.extent | 78 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Rodríguez Mora, E. M. (2019). Programación fetal en el desempeño productivo del ganado de carne [Trabajo de grado, Universidad de los Llanos]. Repositorio digital Universidad de los Llanos. | spa |
dc.identifier.instname | Universidad de los Llanos | spa |
dc.identifier.reponame | Repositorio digital Universidad de los Llanos | spa |
dc.identifier.repourl | https://repositorio.unillanos.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unillanos.edu.co/handle/001/3133 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de los Llanos | spa |
dc.publisher.faculty | Facultad de Ciencias Agropecuarias y Recursos Naturales | spa |
dc.publisher.place | Villavicencio | spa |
dc.relation.references | Ashworth, C. J. (2013). Late pregnancy: The effects of intra-uterine life on production traits in offspring. Animal Frontiers, 3(4), 62–67. https://doi.org/10.2527/af.20130035 | spa |
dc.relation.references | Barker, D. J. P. (1995). The fetal and infant origins of disease. | spa |
dc.relation.references | Barker, D. J. P. (1997). Fetal nutrition and cardiovascular disease in later life. British Medical Bulletin, 53(1), 96–108. https://doi.org/10.1093/oxfordjournals.bmb.a011609 | spa |
dc.relation.references | Bell, A. W., & Greenwood, P. L. (2016). Prenatal origins of postnatal variation in growth, development and productivity of ruminants. Animal Production Science, 56(8), 1217–1232. https://doi.org/10.1071/AN15408 | spa |
dc.relation.references | Camacho, L. E., Lemley, C. O., Prezotto, L. D., Bauer, M. L., Freetly, H. C., Swanson, K. C., & Vonnahme, K. A. (2014). Effects of maternal nutrient restriction followed by realimentation during midgestation on uterine blood flow in beef cows. Theriogenology, 81(9), 1248-1256.e3. https://doi.org/10.1016/j.theriogenology.2014.02.006 | spa |
dc.relation.references | Caton, J S, Grazul-bilska, A. T., Vonnahme, K. A., Luther, J. S., Lardy, G. P., Dakota, E. De, & Norte, D. (2007). Centro de Nutrición y embarazo , Animal y Ciencia Rango, (701), 1–20. | spa |
dc.relation.references | Caton, J S, & Hess, B. W. (2010). Maternal plane of nutrition: Impacts on fetal outcomes and postnatal offspring responses. 4th Grazing Livestock Nutrition Conference, (2005), 104–122. | spa |
dc.relation.references | Caton, J S, Vonnahme, K. A., Luther, J. S., & Lardy, G. P. (2007). Nutritional management during gestation : impacts on lifelong performance. Proceedings of the 18th Annual Florida Ruminant Nutrition Symposium, (701), 1–20. | spa |
dc.relation.references | Caton, Joel S, Crouse, M. S., Reynolds, L. P., Neville, T. L., Dahlen, C. R., Ward, A. K., & Swanson, K. C. (2019). Maternal nutrition and programming of offspring energy requirements1. Translational Animal Science, 3(3), 976–990. https://doi.org/10.1093/tas/txy127 | spa |
dc.relation.references | Chavatte-Palmer, P., Velazquez, M. A., Jammes, H., & Duranthon, V. (2018). Review: Epigenetics, developmental programming and nutrition in herbivores. Animal, 12(s2), S363–S371. https://doi.org/10.1017/S1751731118001337 | spa |
dc.relation.references | Cushman, R. A., & Perry, G. A. (2019). Developmental Programming of Fertility in Livestock Fertility Developmental programming Puberty Gonadal development. Veterinary Clinics of NA: Food Animal Practice, 35(2), 321–330. https://doi.org/10.1016/j.cvfa.2019.02.003 | spa |
dc.relation.references | De Boo, H. A., & Harding, J. E. (2006). The developmental origins of adult disease (Barker) hypothesis. Australian and New Zealand Journal of Obstetrics and Gynaecology, 46(1), 4–14. https://doi.org/10.1111/j.1479-828X.2006.00506.x | spa |
dc.relation.references | Du, M., Tong, J., Zhao, J., Underwood, K. R., Zhu, M., Ford, S. P., & Nathanielsz, P. W. (2010). Fetal programming of skeletal muscle development in ruminant animals. Journal of Animal Science, 88(13 Suppl). https://doi.org/10.2527/jas.2009-2311 | spa |
dc.relation.references | Du, Min, Ford, S. P., Zhu, M.-J., & Stephen, P. (2017). Optimizing livestock production efficiency through maternal nutritional management and fetal developmental programming. Animal Frontiers, 7(3), 5–11. https://doi.org/10.2527/af.2017-0122 | spa |
dc.relation.references | Du, Min, & Stephen, P. (2017). Optimizing livestock production efficiency through maternal nutritional management and fetal developmental programming, 7(3), 5–11. https://doi.org/10.2527/af.2017-0122 | spa |
dc.relation.references | Du, Min, Wang, B., Fu, X., Yang, Q., & Zhu, M. J. (2015). Fetal programming in meat production. Meat Science, 109, 40–47. https://doi.org/10.1016/j.meatsci.2015.04.010 | spa |
dc.relation.references | Duarte, M. S., Gionbelli, M. P., Paulino, P. V. R., Serão, N. V. L., Martins, T. S., Tótaro, P. I. S., … Du, M. (2013). Effects of maternal nutrition on development of gastrointestinal tract of bovine fetus at different stages of gestation. Livestock Science, 153(1–3), 60–65. https://doi.org/10.1016/j.livsci.2013.01.006 | spa |
dc.relation.references | Elolimy, A., Vailati-Riboni, M., Liang, Y., & Loor, J. J. (2019). Cellular Mechanisms and Epigenetic Changes: Role of Nutrition in Livestock. Veterinary Clinics of North America - Food Animal Practice, 35(2), 249–263. https://doi.org/10.1016/j.cvfa.2018.12.001 | spa |
dc.relation.references | Evans, A. C. O., Mossa, F., Walsh, S. W., Scheetz, D., Jimenez-Krassel, F., Ireland, J. L. H., … Ireland, J. J. (2012). Effects of maternal environment during gestation on ovarian folliculogenesis and consequences for fertility in bovine offspring. Reproduction in Domestic Animals, 47(SUPPL.4), 31–37. https://doi.org/10.1111/j.1439-0531.2012.02052.x | spa |
dc.relation.references | Filipiak, Y., Viqueira, M., & Bielli, A. (2016). Development and follicular dynamics from fetal life until puberty in cattle, Veterinaria, 52(202). | spa |
dc.relation.references | Ford, S. P., Hess, B. W., Schwope, M. M., Nijland, M. J., Gilbert, J. S., Vonnahme, K. A., … Nathanielsz, P. W. (2007). Maternal undernutrition during early to midgestation in the ewe results in altered growth, adiposity, and glucose tolerance in male offspring. Journal of Animal Science, 85(5), 1285–1294. https://doi.org/10.2527/jas.2005-624 | spa |
dc.relation.references | Funston, R. N., Larson, D. M., & Vonnahme, K. A. (2010). Effects of maternal nutrition on conceptus growth and offspring performance: implications for beef cattle production. Journal of Animal Science, 88(13 Suppl). https://doi.org/10.2527/jas.2009-2351 | spa |
dc.relation.references | Funston, R. N., & Summers, A. F. (2013). Fetal programming: implications for beef cattle production. Range Beef Cow Symposium XXIII, 29–40. | spa |
dc.relation.references | Funston, R N, Martin, J. L., Adams, D. C., & Larson, D. M. (2018). Winter grazing system and supplementation of beef cows during late gestation influence heifer progeny 1, (August), 4094–4101. https://doi.org/10.2527/jas.2010-3039 | spa |
dc.relation.references | Funston, Richard N., & Summers, A. F. (2013). Effect of prenatal programming on heifer development. Veterinary Clinics of North America - Food Animal Practice, 29(3), 517–536. https://doi.org/10.1016/j.cvfa.2013.07.001 | spa |
dc.relation.references | Godfrey, K. M., & Barker, D. J. P. (2000). Fetal nutrition and adult disease. American Journal of Clinical Nutrition, 71(5 SUPPL.), 1344–1352. https://doi.org/10.1111/j.1365-277x.2005.00612.x | spa |
dc.relation.references | González-recio, O. (2012). Epigenetics : a new challenge in the post-genomic era of livestock, 2(January), 2010–2013. https://doi.org/10.3389/fgene.2011.00106 | spa |
dc.relation.references | Gotoh, T. (2015). Potential of the application of epigenetics in animal production. Animal Production Science, 55(2), 145–158. https://doi.org/10.1071/AN14467 | spa |
dc.relation.references | Greenwood, P., Clayton, E., & Bell, A. (2017). Developmental programming and beef production. Animal Frontiers, 7(3), 38–47. https://doi.org/10.2527/af.2017-0127 | spa |
dc.relation.references | Greenwood, P. L., & Cafe, L. M. (2007). Prenatal and pre-weaning growth and nutrition of cattle: Long-term consequences for beef production. Animal, 1(9), 1283–1296. https://doi.org/10.1017/S175173110700050X | spa |
dc.relation.references | Greenwood, Paul L., & Bell, A. W. (2019). Developmental Programming and Growth of Livestock Tissues for Meat Production. Veterinary Clinics of North America - Food Animal Practice, 35(2), 303–319. https://doi.org/10.1016/j.cvfa.2019.02.008 | spa |
dc.relation.references | Gunn, P. (2016). Optimizing Beef Cattle Nutrition from Conception to Consumption. Ceiba, 54(1), 14–22. https://doi.org/10.5377/ceiba.v54i1.2773 | spa |
dc.relation.references | Hamernik, D. L. (2019). From the Editor Farm animals are important biomedical models, 9(3), 3–5. https://doi.org/10.1093/af/vfz026 | spa |
dc.relation.references | Hoffman, M. L., Reed, S. A., Pillai, S. M., Jones, A. K., Mcfadden, K. K., Zinn, S. A., & Govoni, K. E. (2017). Physiology and Endocrinology Symposium : The effects of poor maternal nutrition during gestation on, 2222–2232. https://doi.org/10.2527/jas2016.1229 | spa |
dc.relation.references | Ibeagha-Awemu, E. M., & Zhao, X. (2015). Epigenetic marks: Regulators of livestock phenotypes and conceivable sources of missing variation in livestock improvement programs. Frontiers in Genetics, 6(SEP), 1–17. https://doi.org/10.3389/fgene.2015.00302 | spa |
dc.relation.references | Ji, Y., Wu, Z., Dai, Z., Wang, X., Li, J., Wang, B., & Wu, G. (2017). Fetal and neonatal programming of postnatal growth and feed efficiency in swine. Journal of Animal Science and Biotechnology, 8(1), 1–15. https://doi.org/10.1186/s40104-0170173-5 | spa |
dc.relation.references | Larson, D. M., Martin, J. L., Adams, D. C., & Funston, R. N. (2009). Winter grazing system and supplementation during late gestation influence performance of beef cows and steer progeny. Journal of Animal Science, 87(3), 1147–1155. https://doi.org/10.2527/jas.2008-1323 | spa |
dc.relation.references | Martin, J. L., Vonnahme, K. A., Adams, D. C., Lardy, G. P., & Funston, R. N. (2007). Effects of dam nutrition on growth and reproductive performance of heifer calves. Journal of Animal Science, 85(3), 841–847. https://doi.org/10.2527/jas.2006-337 | spa |
dc.relation.references | Mclean, K. J., Crouse, M. S., Crosswhite, M. R., Pereira, N. N., Dahlen, C. R., Borowicz, P. P., … Caton, J. S. (2017). Impacts of maternal nutrition on uterine and placental vascularity and mRNA expression of angiogenic factors during the establishment of pregnancy in beef heifers. Translational Animal Science, 160–167. https://doi.org/10.2527/tas2017.0019 | spa |
dc.relation.references | Meyer, A. M., Reed, J. J., Vonnahme, K. A., Soto-Navarro, S. A., Reynolds, L. P., Ford, S. P., … Caton, J. S. (2010). Effects of stage of gestation and nutrient restriction during early to mid-gestation on maternal and fetal visceral organ mass and indices of jejunal growth and vascularity in beef cows. Journal of Animal Science, 88(7), 2410–2424. https://doi.org/10.2527/jas.2009-2220 | spa |
dc.relation.references | Meyer, Allison M, & Caton, J. S. (2016). Role of the Small Intestine in Developmental Programming: Impact of Maternal Nutrition on the Dam and Offspring. Advances in Nutrition, 7(1), 169–178. https://doi.org/10.3945/an.115.010405 | spa |
dc.relation.references | Mossa, F., Walsh, S. W., Ireland, J. J., & Evans, A. C. O. (2015). Early nutritional programming and progeny performance : Is reproductive success already set at birth ?, 18–24. https://doi.org/10.2527/af.2015-0004 | spa |
dc.relation.references | Myatt, L. (2006). Placental adaptive responses and fetal programming. Journal of Physiology, 572(1), 25–30. https://doi.org/10.1113/jphysiol.2006.104968 | spa |
dc.relation.references | Neill, C. O. (2015). The epigenetics of embryo development, 42–49. https://doi.org/10.2527/af.2015-0007 | spa |
dc.relation.references | Park, S. J., Beak, S. H., Jung, D. J. S., Kim, S. Y., Jeong, I. H., Piao, M. Y., … Baik, M. (2018). Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle - A review. Asian-Australasian Journal of Animal Sciences, 31(7), 1043–1061. https://doi.org/10.5713/ajas.18.0310 | spa |
dc.relation.references | Pérez-Clariget, R., & Bielli, A. (2015). Effects of intrauterine nutrition on fetal programming of reproductive organs and the future reproductive performance in sheep. Spermova, 5(2), 206–212. https://doi.org/10.18548/aspe/0002.40 | spa |
dc.relation.references | Quietud, C. V. (2011). Angiogénesis en la placenta de los animales domésticos. | spa |
dc.relation.references | Reed, S. A., & Govoni, K. E. (2017). How mom ’ s diet affects offspring growth and health through modified stem cell function, 7(3), 25–31. https://doi.org/10.2527/af.2017-0125 | spa |
dc.relation.references | Relling, A. E., Chiarle, A., & Giuliodori, M. J. (2016). Fetal Programming in Dairy Cattle, (330), 107–111. | spa |
dc.relation.references | Reynolds, L. P., Borowicz, P. P., Caton, J. S., Vonnahme, K. A., Luther, J. S., Hammer, C. J., … Redmer, D. A. (2010). Developmental programming: the concept, large animal models, and the key role of uteroplacental vascular development. Journal of Animal Science, 88(13 Suppl). https://doi.org/10.2527/jas.2009-2359 | spa |
dc.relation.references | Reynolds, L. P., & Redmer, D. A. (1995). Utero-placental vascular development and placental function. Journal of Animal Science, 73(6), 1839–1851. https://doi.org/10.2527/1995.7361839x | spa |
dc.relation.references | Reynolds, Larry P., Borowicz, P. P., Vonnahme, K. A., Johnson, M. L., Grazul-Bilska, A. T., Wallace, J. M., … Redmer, D. A. (2005). Animal models of placental angiogenesis. Placenta, 26(10), 689–708. https://doi.org/10.1016/j.placenta.2004.11.010 | spa |
dc.relation.references | Reynolds, Lawrence P., Borowicz, P. P., Caton, J. S., Vonnahme, K. A., Luther, J. S., Buchanan, D. S., … Redmer, D. A. (2010). Uteroplacental vascular development and placental function: An update. International Journal of Developmental Biology, 54(2–3), 355–365. https://doi.org/10.1387/ijdb.082799lr | spa |
dc.relation.references | Reynolds, Lawrence P., Borowicz, P. P., Vonnahme, K. A., Johnson, M. L., GrazulBilska, A. T., Redmer, D. A., & Caton, J. S. (2005). Placental angiogenesis in sheep models of compromised pregnancy. Journal of Physiology, 565(1), 43– 58. https://doi.org/10.1113/jphysiol.2004.081745 | spa |
dc.relation.references | Reynolds, Lawrence P., Caton, J. S., Redmer, D. A., Grazul-Bilska, A. T., Vonnahme, K. A., Borowicz, P. P., … Spencer, T. E. (2006). Evidence for altered placental blood flow and vascularity in compromised pregnancies. Journal of Physiology, 572(1), 51–58. https://doi.org/10.1113/jphysiol.2005.104430 | spa |
dc.relation.references | Reynolds, Lawrence P., & Redmer, D. A. (2001). Angiogenesis in the Placenta1. Biology of Reproduction, 64(4), 1033–1040. https://doi.org/10.1095/biolreprod64.4.1033 | spa |
dc.relation.references | Reynolds, Lawrence P., & Vonnahme, K. A. (2017). Livestock as models for developmental programming. Animal Frontiers, 7(3), 12–17. https://doi.org/10.2527/af.2017-0123 | spa |
dc.relation.references | Reynolds, Lawrence P, Borowicz, P. P., Caton, J. S., Crouse, M. S., Dahlen, C. R., & Ward, A. K. (2019). Developmental Programin gof Fetal Growh and Develo p ment. Veterinary Clinics of NA: Food Animal Practice, 35(2), 229–247. https://doi.org/10.1016/j.cvfa.2019.02.006 | spa |
dc.relation.references | Roberts, A. J., Funston, R. N., Grings, E. E., & Petersen, M. K. (2016). Triennial Reproduction Symposium: Beef heifer development and lifetime productivity in rangeland-based production systems. Journal of Animal Science, 94(7), 2705– 2715. https://doi.org/10.2527/jas.2016-0435 | spa |
dc.relation.references | Roberts, J., Funston, R. N., & Petersen, M. K. (2016). Trienal de la reproducción Simposio : Desarrollo de vaca Carne de vaca y la productividad de toda la vida Revisión y discusión, 2705–2715. | spa |
dc.relation.references | Sferruzzi-perri, A. N., & Camm, E. J. (2016). The Programming Power of the Placenta, 7(March). https://doi.org/10.3389/fphys.2016.00033 | spa |
dc.relation.references | Sinclair, K., Rutherford, K., Wallace, J., Brameld, J., Stöger, R., Alberio, R., … Dwyer, C. (n.d.). The consequenses of epigenetics and fetal programming for English beef and sheep producers. In Executive summary (pp. 1–69). | spa |
dc.relation.references | Vonnahme, K A. (2007). Nutrition during gestation and feral programming. Proceedings of the Range Beef Cow Symposium, XX, 14(December), 10 p. Retrieved from http://digitalcommons.unl.edu/rangebeefcowsymphttp://digitalcommons.unl.ed u/rangebeefcowsymp/14 | spa |
dc.relation.references | Vonnahme, K A. (2012). How the maternal environment impacts fetal and placental development : implications for livestock production. Anim. Reprod., 9, 789–797. | spa |
dc.relation.references | Vonnahme, Kimberly A., Lemley, C. O., Caton, J. S., & Meyer, A. M. (2015). Impacts of maternal nutrition on vascularity of nutrient transferring tissues during gestation and lactation. Nutrients, 7(5), 3497–3523. https://doi.org/10.3390/nu7053497 | spa |
dc.relation.references | Vonnahme, Kimberly A., Tanner, A. R., & Hildago, M. A. V. (2018). Effect of maternal diet on placental development, uteroplacental blood flow, and offspring development in beef cattle. Animal Reproduction, 15(Irrs), 912–922. https://doi.org/10.21451/1984-3143-AR2018-0050 | spa |
dc.relation.references | Wu, G., Bazer, F. W., Wallace, J. M., & Spencer, T. E. (2006). Board-invited review: Intrauterine growth retardation: Implications for the animal sciences. Journal of Animal Science, 84(9), 2316–2337. https://doi.org/10.2527/jas.2006-156 | spa |
dc.relation.references | Wu, Guoyao, Bazer, F., Cudd, T., & Meininger, C. (2004). Recent Advances in Nutritional Sciences-Maternal Nutrition and Fetal Development. Of Nutrition, (13), 2169–2172. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Recent+Adva nces+in+Nutritional+Sciences+Maternal+Nutrition+and+Fetal#8 | spa |
dc.relation.references | Yan, X., Zhu, M., Dodson, M. V, & Du, M. (2013). Developmental Programming of Fetal Skeletal Muscle and Adipose Tissue Development. https://doi.org/10.7150/jgen.3930 | spa |
dc.relation.references | Zhu, M., Ford, S. P., Nathanielsz, P. W., & Du, M. (2004). Effect of Maternal Nutrient Restriction in Sheep on the Development of Fetal Skeletal Muscle 1, 1973(August), 1968–1973. https://doi.org/10.1095/biolreprod.104.034561 | spa |
dc.relation.references | Zhu, M. J., Ford, S. P., Means, W. J., Hess, B. W., Nathanielsz, P. W., & Du, M. (2006). Maternal nutrient restriction affects properties of skeletal muscle in offspring, 1, 241–250. https://doi.org/10.1113/jphysiol.2006.112110 | spa |
dc.rights | Derechos Reservados - Universidad de los Llanos 2019 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.armarc | Biología del desarrollo | |
dc.subject.armarc | Feto - Desarrollo | |
dc.subject.armarc | Embriología veterinaria | |
dc.title | Programación fetal en el desempeño productivo del ganado de carne | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
Cargando...

- Nombre:
- license.txt
- Tamaño:
- 14.43 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: