Publicación:
Programación fetal en el desempeño productivo del ganado de carne

dc.contributor.advisorFuentes Reyes, Edgar Edilberto
dc.contributor.authorRodríguez Mora, Eliana Marcela
dc.date.accessioned2023-11-08T16:25:46Z
dc.date.available2023-11-08T16:25:46Z
dc.date.issued2019
dc.descriptionGráficosspa
dc.description.abstractLa salud y el desarrollo postnatal pueden verse influenciados por los eventos que ocurren en el útero, este concepto dio origen a lo que hoy en día se reconoce como programación fetal. Esta reconoce que estímulos durante momentos críticos de la gestación incluida la nutrición, alteran la trayectoria de desarrollo del feto (Du et al., 2015), produciendo cambios permanentes en la estructura y función del organismo en desarrollo, con el resultado de efectos persistentes que pueden observarse en las siguientes generaciones. La programación fetal esta mediada por alteraciones estables y heredables de la expresión génica a través de modificaciones epigenéticas. Investigaciones en el campo de la producción animal han evidenciado que pequeñas diferencias en la nutrición durante la gestación pueden alterar la eficiencia de la producción de crías de por vida. Por lo tanto, el potencial para la programación fetal se debe considerar al determinar las estrategias nutricionales durante la gestación. Por este motivo se recopila información actualizada sobre los impactos de la nutrición materna sobre el desarrollo fetal en el ganado de carne y el rendimiento productivo en edad adulta.spa
dc.description.abstractThe concept that health and postnatal development can be influenced by events that occur in the womb, gave rise to what is nowadays recognized as fetal programming. This recognizes that stimuli during critical moments of pregnancy including nutrition, alter the development trajectory of the fetus (Du et al., 2015), producing permanent changes in the structure and function of the developing organism, with the result of persistent effects that can be observed in the following generations. Fetal programming is mediated by stable and inheritable alterations of gene expression through epigenetic modifications. Research in the field of animal production has shown that small differences in nutrition during pregnancy can alter the efficiency of the production of young for life. Therefore, the potential for fetal programming should be considered when determining nutritional strategies during pregnancy. For this reason, updated information is collect on the challenges of maternal nutrition on fetal development in beef cattle and productive performance adult life.eng
dc.description.degreelevelPregradospa
dc.description.degreenameMedico(a) Veterinario(a) Zootecnistaspa
dc.description.programMedicina Veterinaria y Zootecniaspa
dc.description.tableofcontentsResumen. -- Abstract. -- Objetivos. -- Objetivo general. -- Objetivos específicos. -- Introducción. -- Justificación. -- Estado del arte. -- Hipótesis de Barker. -- Programación fetal - programación del desarrollo. -- Concepto. -- Modelos animales en la programación del desarrollo fetal. -- Impacto de la nutrición en la programación del Desarrollo fetal. -- Nutrición materna. -- Factores que influyen en la necesidad y partición de nutrientes. -- Mal nutrición materna. -- Programación del desarrollo placentario. -- Placentación. -- Circulación placentaria, crecimiento y desarrollo. -- Nutrición materna en el desarrollo y función placentaria. -- Nutrición materna en la programación del desarrollo fetal. -- Crecimiento fetal. -- Nutrición materna en el desarrollo del tracto gastrointestinal del feto. -- Epigenética. -- Concepto. -- Procesos epigenéticos. -- Mecanismos epigenéticos. -- Nutrición materna en los mecanismos epigenéticos. -- Nutrición materna en la programación fetal del musculo esquelético y tejido adiposo. -- Importancia de la programación fetal en el músculo esquelético, tejido adiposo y tejido conectivo. -- Programación fetal del musculo esquelético. -- Programación fetal del tejido adiposo y conectivo. -- Impacto de la programación fetal en la función reproductiva. -- Desarrollo gonadal. -- Programación fetal y rendimiento postnatal de las crías. -- Impacto de la programación fetal en el desarrollo postnatal del tejido musculo esquelético. -- Impacto de la nutrición materna en el desempeño reproductivo de la Descendencia. -- Implicaciones económicas. -- Análisis y discusión. -- Conclusiones. -- Recomendaciones. -- Bibliografía.spa
dc.format.extent78 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationRodríguez Mora, E. M. (2019). Programación fetal en el desempeño productivo del ganado de carne [Trabajo de grado, Universidad de los Llanos]. Repositorio digital Universidad de los Llanos.spa
dc.identifier.instnameUniversidad de los Llanosspa
dc.identifier.reponameRepositorio digital Universidad de los Llanosspa
dc.identifier.repourlhttps://repositorio.unillanos.edu.co/spa
dc.identifier.urihttps://repositorio.unillanos.edu.co/handle/001/3133
dc.language.isospaspa
dc.publisherUniversidad de los Llanosspa
dc.publisher.facultyFacultad de Ciencias Agropecuarias y Recursos Naturalesspa
dc.publisher.placeVillavicenciospa
dc.relation.referencesAshworth, C. J. (2013). Late pregnancy: The effects of intra-uterine life on production traits in offspring. Animal Frontiers, 3(4), 62–67. https://doi.org/10.2527/af.20130035spa
dc.relation.referencesBarker, D. J. P. (1995). The fetal and infant origins of disease.spa
dc.relation.referencesBarker, D. J. P. (1997). Fetal nutrition and cardiovascular disease in later life. British Medical Bulletin, 53(1), 96–108. https://doi.org/10.1093/oxfordjournals.bmb.a011609spa
dc.relation.referencesBell, A. W., & Greenwood, P. L. (2016). Prenatal origins of postnatal variation in growth, development and productivity of ruminants. Animal Production Science, 56(8), 1217–1232. https://doi.org/10.1071/AN15408spa
dc.relation.referencesCamacho, L. E., Lemley, C. O., Prezotto, L. D., Bauer, M. L., Freetly, H. C., Swanson, K. C., & Vonnahme, K. A. (2014). Effects of maternal nutrient restriction followed by realimentation during midgestation on uterine blood flow in beef cows. Theriogenology, 81(9), 1248-1256.e3. https://doi.org/10.1016/j.theriogenology.2014.02.006spa
dc.relation.referencesCaton, J S, Grazul-bilska, A. T., Vonnahme, K. A., Luther, J. S., Lardy, G. P., Dakota, E. De, & Norte, D. (2007). Centro de Nutrición y embarazo , Animal y Ciencia Rango, (701), 1–20.spa
dc.relation.referencesCaton, J S, & Hess, B. W. (2010). Maternal plane of nutrition: Impacts on fetal outcomes and postnatal offspring responses. 4th Grazing Livestock Nutrition Conference, (2005), 104–122.spa
dc.relation.referencesCaton, J S, Vonnahme, K. A., Luther, J. S., & Lardy, G. P. (2007). Nutritional management during gestation : impacts on lifelong performance. Proceedings of the 18th Annual Florida Ruminant Nutrition Symposium, (701), 1–20.spa
dc.relation.referencesCaton, Joel S, Crouse, M. S., Reynolds, L. P., Neville, T. L., Dahlen, C. R., Ward, A. K., & Swanson, K. C. (2019). Maternal nutrition and programming of offspring energy requirements1. Translational Animal Science, 3(3), 976–990. https://doi.org/10.1093/tas/txy127spa
dc.relation.referencesChavatte-Palmer, P., Velazquez, M. A., Jammes, H., & Duranthon, V. (2018). Review: Epigenetics, developmental programming and nutrition in herbivores. Animal, 12(s2), S363–S371. https://doi.org/10.1017/S1751731118001337spa
dc.relation.referencesCushman, R. A., & Perry, G. A. (2019). Developmental Programming of Fertility in Livestock Fertility Developmental programming Puberty Gonadal development. Veterinary Clinics of NA: Food Animal Practice, 35(2), 321–330. https://doi.org/10.1016/j.cvfa.2019.02.003spa
dc.relation.referencesDe Boo, H. A., & Harding, J. E. (2006). The developmental origins of adult disease (Barker) hypothesis. Australian and New Zealand Journal of Obstetrics and Gynaecology, 46(1), 4–14. https://doi.org/10.1111/j.1479-828X.2006.00506.xspa
dc.relation.referencesDu, M., Tong, J., Zhao, J., Underwood, K. R., Zhu, M., Ford, S. P., & Nathanielsz, P. W. (2010). Fetal programming of skeletal muscle development in ruminant animals. Journal of Animal Science, 88(13 Suppl). https://doi.org/10.2527/jas.2009-2311spa
dc.relation.referencesDu, Min, Ford, S. P., Zhu, M.-J., & Stephen, P. (2017). Optimizing livestock production efficiency through maternal nutritional management and fetal developmental programming. Animal Frontiers, 7(3), 5–11. https://doi.org/10.2527/af.2017-0122spa
dc.relation.referencesDu, Min, & Stephen, P. (2017). Optimizing livestock production efficiency through maternal nutritional management and fetal developmental programming, 7(3), 5–11. https://doi.org/10.2527/af.2017-0122spa
dc.relation.referencesDu, Min, Wang, B., Fu, X., Yang, Q., & Zhu, M. J. (2015). Fetal programming in meat production. Meat Science, 109, 40–47. https://doi.org/10.1016/j.meatsci.2015.04.010spa
dc.relation.referencesDuarte, M. S., Gionbelli, M. P., Paulino, P. V. R., Serão, N. V. L., Martins, T. S., Tótaro, P. I. S., … Du, M. (2013). Effects of maternal nutrition on development of gastrointestinal tract of bovine fetus at different stages of gestation. Livestock Science, 153(1–3), 60–65. https://doi.org/10.1016/j.livsci.2013.01.006spa
dc.relation.referencesElolimy, A., Vailati-Riboni, M., Liang, Y., & Loor, J. J. (2019). Cellular Mechanisms and Epigenetic Changes: Role of Nutrition in Livestock. Veterinary Clinics of North America - Food Animal Practice, 35(2), 249–263. https://doi.org/10.1016/j.cvfa.2018.12.001spa
dc.relation.referencesEvans, A. C. O., Mossa, F., Walsh, S. W., Scheetz, D., Jimenez-Krassel, F., Ireland, J. L. H., … Ireland, J. J. (2012). Effects of maternal environment during gestation on ovarian folliculogenesis and consequences for fertility in bovine offspring. Reproduction in Domestic Animals, 47(SUPPL.4), 31–37. https://doi.org/10.1111/j.1439-0531.2012.02052.xspa
dc.relation.referencesFilipiak, Y., Viqueira, M., & Bielli, A. (2016). Development and follicular dynamics from fetal life until puberty in cattle, Veterinaria, 52(202).spa
dc.relation.referencesFord, S. P., Hess, B. W., Schwope, M. M., Nijland, M. J., Gilbert, J. S., Vonnahme, K. A., … Nathanielsz, P. W. (2007). Maternal undernutrition during early to midgestation in the ewe results in altered growth, adiposity, and glucose tolerance in male offspring. Journal of Animal Science, 85(5), 1285–1294. https://doi.org/10.2527/jas.2005-624spa
dc.relation.referencesFunston, R. N., Larson, D. M., & Vonnahme, K. A. (2010). Effects of maternal nutrition on conceptus growth and offspring performance: implications for beef cattle production. Journal of Animal Science, 88(13 Suppl). https://doi.org/10.2527/jas.2009-2351spa
dc.relation.referencesFunston, R. N., & Summers, A. F. (2013). Fetal programming: implications for beef cattle production. Range Beef Cow Symposium XXIII, 29–40.spa
dc.relation.referencesFunston, R N, Martin, J. L., Adams, D. C., & Larson, D. M. (2018). Winter grazing system and supplementation of beef cows during late gestation influence heifer progeny 1, (August), 4094–4101. https://doi.org/10.2527/jas.2010-3039spa
dc.relation.referencesFunston, Richard N., & Summers, A. F. (2013). Effect of prenatal programming on heifer development. Veterinary Clinics of North America - Food Animal Practice, 29(3), 517–536. https://doi.org/10.1016/j.cvfa.2013.07.001spa
dc.relation.referencesGodfrey, K. M., & Barker, D. J. P. (2000). Fetal nutrition and adult disease. American Journal of Clinical Nutrition, 71(5 SUPPL.), 1344–1352. https://doi.org/10.1111/j.1365-277x.2005.00612.xspa
dc.relation.referencesGonzález-recio, O. (2012). Epigenetics : a new challenge in the post-genomic era of livestock, 2(January), 2010–2013. https://doi.org/10.3389/fgene.2011.00106spa
dc.relation.referencesGotoh, T. (2015). Potential of the application of epigenetics in animal production. Animal Production Science, 55(2), 145–158. https://doi.org/10.1071/AN14467spa
dc.relation.referencesGreenwood, P., Clayton, E., & Bell, A. (2017). Developmental programming and beef production. Animal Frontiers, 7(3), 38–47. https://doi.org/10.2527/af.2017-0127spa
dc.relation.referencesGreenwood, P. L., & Cafe, L. M. (2007). Prenatal and pre-weaning growth and nutrition of cattle: Long-term consequences for beef production. Animal, 1(9), 1283–1296. https://doi.org/10.1017/S175173110700050Xspa
dc.relation.referencesGreenwood, Paul L., & Bell, A. W. (2019). Developmental Programming and Growth of Livestock Tissues for Meat Production. Veterinary Clinics of North America - Food Animal Practice, 35(2), 303–319. https://doi.org/10.1016/j.cvfa.2019.02.008spa
dc.relation.referencesGunn, P. (2016). Optimizing Beef Cattle Nutrition from Conception to Consumption. Ceiba, 54(1), 14–22. https://doi.org/10.5377/ceiba.v54i1.2773spa
dc.relation.referencesHamernik, D. L. (2019). From the Editor Farm animals are important biomedical models, 9(3), 3–5. https://doi.org/10.1093/af/vfz026spa
dc.relation.referencesHoffman, M. L., Reed, S. A., Pillai, S. M., Jones, A. K., Mcfadden, K. K., Zinn, S. A., & Govoni, K. E. (2017). Physiology and Endocrinology Symposium : The effects of poor maternal nutrition during gestation on, 2222–2232. https://doi.org/10.2527/jas2016.1229spa
dc.relation.referencesIbeagha-Awemu, E. M., & Zhao, X. (2015). Epigenetic marks: Regulators of livestock phenotypes and conceivable sources of missing variation in livestock improvement programs. Frontiers in Genetics, 6(SEP), 1–17. https://doi.org/10.3389/fgene.2015.00302spa
dc.relation.referencesJi, Y., Wu, Z., Dai, Z., Wang, X., Li, J., Wang, B., & Wu, G. (2017). Fetal and neonatal programming of postnatal growth and feed efficiency in swine. Journal of Animal Science and Biotechnology, 8(1), 1–15. https://doi.org/10.1186/s40104-0170173-5spa
dc.relation.referencesLarson, D. M., Martin, J. L., Adams, D. C., & Funston, R. N. (2009). Winter grazing system and supplementation during late gestation influence performance of beef cows and steer progeny. Journal of Animal Science, 87(3), 1147–1155. https://doi.org/10.2527/jas.2008-1323spa
dc.relation.referencesMartin, J. L., Vonnahme, K. A., Adams, D. C., Lardy, G. P., & Funston, R. N. (2007). Effects of dam nutrition on growth and reproductive performance of heifer calves. Journal of Animal Science, 85(3), 841–847. https://doi.org/10.2527/jas.2006-337spa
dc.relation.referencesMclean, K. J., Crouse, M. S., Crosswhite, M. R., Pereira, N. N., Dahlen, C. R., Borowicz, P. P., … Caton, J. S. (2017). Impacts of maternal nutrition on uterine and placental vascularity and mRNA expression of angiogenic factors during the establishment of pregnancy in beef heifers. Translational Animal Science, 160–167. https://doi.org/10.2527/tas2017.0019spa
dc.relation.referencesMeyer, A. M., Reed, J. J., Vonnahme, K. A., Soto-Navarro, S. A., Reynolds, L. P., Ford, S. P., … Caton, J. S. (2010). Effects of stage of gestation and nutrient restriction during early to mid-gestation on maternal and fetal visceral organ mass and indices of jejunal growth and vascularity in beef cows. Journal of Animal Science, 88(7), 2410–2424. https://doi.org/10.2527/jas.2009-2220spa
dc.relation.referencesMeyer, Allison M, & Caton, J. S. (2016). Role of the Small Intestine in Developmental Programming: Impact of Maternal Nutrition on the Dam and Offspring. Advances in Nutrition, 7(1), 169–178. https://doi.org/10.3945/an.115.010405spa
dc.relation.referencesMossa, F., Walsh, S. W., Ireland, J. J., & Evans, A. C. O. (2015). Early nutritional programming and progeny performance : Is reproductive success already set at birth ?, 18–24. https://doi.org/10.2527/af.2015-0004spa
dc.relation.referencesMyatt, L. (2006). Placental adaptive responses and fetal programming. Journal of Physiology, 572(1), 25–30. https://doi.org/10.1113/jphysiol.2006.104968spa
dc.relation.referencesNeill, C. O. (2015). The epigenetics of embryo development, 42–49. https://doi.org/10.2527/af.2015-0007spa
dc.relation.referencesPark, S. J., Beak, S. H., Jung, D. J. S., Kim, S. Y., Jeong, I. H., Piao, M. Y., … Baik, M. (2018). Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle - A review. Asian-Australasian Journal of Animal Sciences, 31(7), 1043–1061. https://doi.org/10.5713/ajas.18.0310spa
dc.relation.referencesPérez-Clariget, R., & Bielli, A. (2015). Effects of intrauterine nutrition on fetal programming of reproductive organs and the future reproductive performance in sheep. Spermova, 5(2), 206–212. https://doi.org/10.18548/aspe/0002.40spa
dc.relation.referencesQuietud, C. V. (2011). Angiogénesis en la placenta de los animales domésticos.spa
dc.relation.referencesReed, S. A., & Govoni, K. E. (2017). How mom ’ s diet affects offspring growth and health through modified stem cell function, 7(3), 25–31. https://doi.org/10.2527/af.2017-0125spa
dc.relation.referencesRelling, A. E., Chiarle, A., & Giuliodori, M. J. (2016). Fetal Programming in Dairy Cattle, (330), 107–111.spa
dc.relation.referencesReynolds, L. P., Borowicz, P. P., Caton, J. S., Vonnahme, K. A., Luther, J. S., Hammer, C. J., … Redmer, D. A. (2010). Developmental programming: the concept, large animal models, and the key role of uteroplacental vascular development. Journal of Animal Science, 88(13 Suppl). https://doi.org/10.2527/jas.2009-2359spa
dc.relation.referencesReynolds, L. P., & Redmer, D. A. (1995). Utero-placental vascular development and placental function. Journal of Animal Science, 73(6), 1839–1851. https://doi.org/10.2527/1995.7361839xspa
dc.relation.referencesReynolds, Larry P., Borowicz, P. P., Vonnahme, K. A., Johnson, M. L., Grazul-Bilska, A. T., Wallace, J. M., … Redmer, D. A. (2005). Animal models of placental angiogenesis. Placenta, 26(10), 689–708. https://doi.org/10.1016/j.placenta.2004.11.010spa
dc.relation.referencesReynolds, Lawrence P., Borowicz, P. P., Caton, J. S., Vonnahme, K. A., Luther, J. S., Buchanan, D. S., … Redmer, D. A. (2010). Uteroplacental vascular development and placental function: An update. International Journal of Developmental Biology, 54(2–3), 355–365. https://doi.org/10.1387/ijdb.082799lrspa
dc.relation.referencesReynolds, Lawrence P., Borowicz, P. P., Vonnahme, K. A., Johnson, M. L., GrazulBilska, A. T., Redmer, D. A., & Caton, J. S. (2005). Placental angiogenesis in sheep models of compromised pregnancy. Journal of Physiology, 565(1), 43– 58. https://doi.org/10.1113/jphysiol.2004.081745spa
dc.relation.referencesReynolds, Lawrence P., Caton, J. S., Redmer, D. A., Grazul-Bilska, A. T., Vonnahme, K. A., Borowicz, P. P., … Spencer, T. E. (2006). Evidence for altered placental blood flow and vascularity in compromised pregnancies. Journal of Physiology, 572(1), 51–58. https://doi.org/10.1113/jphysiol.2005.104430spa
dc.relation.referencesReynolds, Lawrence P., & Redmer, D. A. (2001). Angiogenesis in the Placenta1. Biology of Reproduction, 64(4), 1033–1040. https://doi.org/10.1095/biolreprod64.4.1033spa
dc.relation.referencesReynolds, Lawrence P., & Vonnahme, K. A. (2017). Livestock as models for developmental programming. Animal Frontiers, 7(3), 12–17. https://doi.org/10.2527/af.2017-0123spa
dc.relation.referencesReynolds, Lawrence P, Borowicz, P. P., Caton, J. S., Crouse, M. S., Dahlen, C. R., & Ward, A. K. (2019). Developmental Programin gof Fetal Growh and Develo p ment. Veterinary Clinics of NA: Food Animal Practice, 35(2), 229–247. https://doi.org/10.1016/j.cvfa.2019.02.006spa
dc.relation.referencesRoberts, A. J., Funston, R. N., Grings, E. E., & Petersen, M. K. (2016). Triennial Reproduction Symposium: Beef heifer development and lifetime productivity in rangeland-based production systems. Journal of Animal Science, 94(7), 2705– 2715. https://doi.org/10.2527/jas.2016-0435spa
dc.relation.referencesRoberts, J., Funston, R. N., & Petersen, M. K. (2016). Trienal de la reproducción Simposio : Desarrollo de vaca Carne de vaca y la productividad de toda la vida Revisión y discusión, 2705–2715.spa
dc.relation.referencesSferruzzi-perri, A. N., & Camm, E. J. (2016). The Programming Power of the Placenta, 7(March). https://doi.org/10.3389/fphys.2016.00033spa
dc.relation.referencesSinclair, K., Rutherford, K., Wallace, J., Brameld, J., Stöger, R., Alberio, R., … Dwyer, C. (n.d.). The consequenses of epigenetics and fetal programming for English beef and sheep producers. In Executive summary (pp. 1–69).spa
dc.relation.referencesVonnahme, K A. (2007). Nutrition during gestation and feral programming. Proceedings of the Range Beef Cow Symposium, XX, 14(December), 10 p. Retrieved from http://digitalcommons.unl.edu/rangebeefcowsymphttp://digitalcommons.unl.ed u/rangebeefcowsymp/14spa
dc.relation.referencesVonnahme, K A. (2012). How the maternal environment impacts fetal and placental development : implications for livestock production. Anim. Reprod., 9, 789–797.spa
dc.relation.referencesVonnahme, Kimberly A., Lemley, C. O., Caton, J. S., & Meyer, A. M. (2015). Impacts of maternal nutrition on vascularity of nutrient transferring tissues during gestation and lactation. Nutrients, 7(5), 3497–3523. https://doi.org/10.3390/nu7053497spa
dc.relation.referencesVonnahme, Kimberly A., Tanner, A. R., & Hildago, M. A. V. (2018). Effect of maternal diet on placental development, uteroplacental blood flow, and offspring development in beef cattle. Animal Reproduction, 15(Irrs), 912–922. https://doi.org/10.21451/1984-3143-AR2018-0050spa
dc.relation.referencesWu, G., Bazer, F. W., Wallace, J. M., & Spencer, T. E. (2006). Board-invited review: Intrauterine growth retardation: Implications for the animal sciences. Journal of Animal Science, 84(9), 2316–2337. https://doi.org/10.2527/jas.2006-156spa
dc.relation.referencesWu, Guoyao, Bazer, F., Cudd, T., & Meininger, C. (2004). Recent Advances in Nutritional Sciences-Maternal Nutrition and Fetal Development. Of Nutrition, (13), 2169–2172. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Recent+Adva nces+in+Nutritional+Sciences+Maternal+Nutrition+and+Fetal#8spa
dc.relation.referencesYan, X., Zhu, M., Dodson, M. V, & Du, M. (2013). Developmental Programming of Fetal Skeletal Muscle and Adipose Tissue Development. https://doi.org/10.7150/jgen.3930spa
dc.relation.referencesZhu, M., Ford, S. P., Nathanielsz, P. W., & Du, M. (2004). Effect of Maternal Nutrient Restriction in Sheep on the Development of Fetal Skeletal Muscle 1, 1973(August), 1968–1973. https://doi.org/10.1095/biolreprod.104.034561spa
dc.relation.referencesZhu, M. J., Ford, S. P., Means, W. J., Hess, B. W., Nathanielsz, P. W., & Du, M. (2006). Maternal nutrient restriction affects properties of skeletal muscle in offspring, 1, 241–250. https://doi.org/10.1113/jphysiol.2006.112110spa
dc.rightsDerechos Reservados - Universidad de los Llanos 2019spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.armarcBiología del desarrollo
dc.subject.armarcFeto - Desarrollo
dc.subject.armarcEmbriología veterinaria
dc.titleProgramación fetal en el desempeño productivo del ganado de carnespa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication

Archivos

Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
1123511779
Tamaño:
868.36 KB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
Cargando...
Miniatura
Nombre:
Anexo 1
Tamaño:
250.92 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta de autorización
Bloque de licencias
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.43 KB
Formato:
Item-specific license agreed upon to submission
Descripción: