Publicación:
Crecimiento poblacional de Macrothrix spinosa alimentada con Chlorella sp.

dc.contributor.authorOviedo-Montiel, Harold DJspa
dc.contributor.authorHerrera-Cruz, Edwin E.spa
dc.contributor.authorHoya-Florez, Jenny K.spa
dc.contributor.authorPrieto-Guevara, Martha Jspa
dc.contributor.authorEstrada-Posada, Ana L.spa
dc.contributor.authorYepes-Blandón, Jonny A.spa
dc.date.accessioned2019-12-16 00:00:00
dc.date.accessioned2022-06-13T17:42:34Z
dc.date.available2019-12-16 00:00:00
dc.date.available2022-06-13T17:42:34Z
dc.date.issued2019-12-16
dc.description.abstractEl zooplancton es considerado como un alimento de gran importancia para las larvas de los peces por su excelente perfil nutricional. La mayor dificultad en el cultivo del zooplancton, en especial de cladóceros, es la susceptibilidad al alimento que consumen, pues deficiencias en los nutrientes influyen significativamente en su producción. Por tanto, el estudio de la partícula alimenticia en cantidad y calidad óptima es necesario para potencializar la producción. En la Piscícola San Silvestre S.A. se evaluó el efecto del alimento sobre las variables productivas del cladócero Macrothrix spinosa con fotoperiodo 12:12 luz: oscuridad y aireación constante en 8 unidades experimentales con volumen de 2.5 L. Los organismos, en densidad inicial de 2 org/mL, se alimentaron con la microalga Chlorella sp, previamente cultivada en dos medios de cultivo: (T1) Chlorella sp. cultivada con F/2 de Guillard y (T2) Chlorella sp. cultivada con Nutrifoliar®. Fueron determinados los parámetros poblacionales: densidad máxima (Dm), tasa instantánea de crecimiento (K), tiempo de duplicación (Td) y rendimiento (R). Diariamente se registró la temperatura (25.86±0.36 °C), pH (7.58±0.32) y OD (5.74±0.56 mg/L). La mayor Dm fue 27.38±0.08 org/mL en T1 (P>0.05). Mayor K, menor Td y mayor R se registraron en T1 (0.24±0.00, 2.84±0.04 días y 2.50±0.01 org/mL respectivamente) (P>0.05). Los resultados sugieren que M. spinosa, alimentada con la microalga Chlorella sp. cultivada con F/2 de Guillard, alcanza mejor desempeño poblacional en cultivo.spa
dc.description.abstractZooplankton is considered a food of great importance for fish larvae because of its excellent nutritional profile. The greatest difficulty in the culture of zooplankton, especially cladocerans, is the susceptibility to the food they consume, since deficiencies in the nutrients significantly influence their production. Therefore, the study of the food particle in optimal quantity and quality is necessary to potentiate production. In the Piscícola San Silvestre S.A, the effect of the food on the productive variables of the cladoceran Macrothrix spinosa with photoperiod 12:12 light: dark and constant aeration in 8 experimental units with volume of 2.5 liters was evaluated. The organisms, in initial density of 2 clad / mL, were fed with the microalga Chlorella sp, previously cultivated in two culture media: (T1) Chlorella sp. cultivated with Guillard’s F/2 and (T2) Chlorella sp. grown with Nutrifoliar®. The population parameters were determined: maximum density (Dm), instantaneous growth rate (K), doubling time (Td) and yield (R). The temperature was recorded daily (25.86±0.36 °C), pH (7.58±0.32) and OD (5.74±0.56 mg/L). The highest Dm was 27.38±0.08 org/mL in T1 (P>0.05). Higher K, lower Td and higher R were recorded in T1 (0.24±0.00, 2.84±0.04 days and 2.50±0.01 org/mL respectively) (P>0.05). The results suggest that M. spinosa fed with the microalga Chlorella sp. cultivated with Guillard’s F / 2, achieves better population performance in culture.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.22579/20112629.571
dc.identifier.eissn2011-2629
dc.identifier.issn0121-3709
dc.identifier.urihttps://repositorio.unillanos.edu.co/handle/001/2733
dc.identifier.urlhttps://doi.org/10.22579/20112629.571
dc.language.isospaspa
dc.publisherUniversidad de los Llanosspa
dc.relation.bitstreamhttps://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/571/pdf
dc.relation.citationeditionNúm. 2 , Año 2019spa
dc.relation.citationissue2spa
dc.relation.citationvolume23spa
dc.relation.ispartofjournalOrinoquiaspa
dc.relation.referencesÁlvarez J. 2010. Caracterización limnológica de las ciénagas de Arcial, El Porro y Cintura (río San Jorge) y Bañó, Charco Pescao y Pantano Bonito (río Sinú), departamento de Córdoba. En: Rangel-Ch JO, Editor. Colombia Diversidad Biótica IX: Ciénagas de Córdoba: Biodiversidad-Ecología y Manejo Ambiental.spa
dc.relation.referencesAzuraidi O, Yusoff F, Shamsudin M, Raha R, Alekseev V, Matias-Peralta H. Effect of food density on male appearance and ephippia production in a tropical cladoceran, Moina micrura Kurz, 1874. Aquaculture. 2013;412-413:131-135.spa
dc.relation.referencesCastilho M, Wisniewski C, Santos-Wisniewski M. Life cycle of Scapholeberis armata freyi Dumont & Pensaert, 1983 (Cladocera, Daphnidae). Biota Neotrop. 2012;12(4):56-60.spa
dc.relation.referencesCastro-Mejia J, Castro-Mejia G, Monroy-Dosta M, Davila-Sanchez F, Castro-Castellón A. Population density comparison of Ceriodapnia dubia fed with bacteria obtained from Biofloc system. J Entomol Zool Stud. 2017; 5(5):2009-2012.spa
dc.relation.referencesCheban L, Grynko O, Dorosh I. Co-cultivation of Daphnia magna (Straus) and Desmodesmus armatus (chod.) Hegew. in recirculating aquaculture system wastewater. Arch Pol Fisheries. 2018;26(1):57-64.spa
dc.relation.referencesChen R, Tang H, Zhao F, Wu Y, Huang Y, Yang Z. Food availability and initial relative abundance determine the outcome of interspecific competition between two different-sized cladocerans. Int Rev Hydrobiol. 2016;101(1):105–112.spa
dc.relation.referencesCobos-Ruiz M, Paredes-Rodríguez J, Castro-Gómez J. Inducción de la producción de lípidos totales en microalgas sometidas a estrés nutritivo. Acta biol Colomb. 2016;21(1):17-26.spa
dc.relation.referencesDay J, Gong Y, Hu Q. Microzooplanktonic grazers – A potentially devastating threat to the commercial success of microalgal mass culture. Algal Res. 2017;27(1):356-365.spa
dc.relation.referencesDutta A, Kar S, Das P, Das U, Das S, Kar D. Studies on Physico-Chemical Aspects and Zooplankton Diversity of a Freshwater Wetland in Cachar, Assam. Int J Sci Environ Technol. 2017;6(3):1877- 1885.spa
dc.relation.referencesEspinosa-Rodríguez C, Sarma S, Nandini S. Interactions between the rotifer Euchlanis dilatata and the cladocerans Alona glabra and Macrothrix triserialis in relation to diet type. Limnologica. 2012;42(1):50-55.spa
dc.relation.referencesFerrão-Filho A, Fileto C, Lopes N, Arcifa M. Effects of essential fatty acids and N and P limited algae on the growth of tropical cladocerans. Freshwater Biology. 2003;48(5):759-767. doi.org/10.1046/j.1365-2427.2003.01048.xspa
dc.relation.referencesFileto C, Arcifa M, Marchetti J, Turati I, Lopes N. Influence of biochemical, mineral and morphological features of natural food on tropical cladocerans. Aquat Ecol. 2007;41(4):557-568.spa
dc.relation.referencesFuentes-Reines J, Zoppi E, Morón E, Gámez D, López C. Conocimiento de la fauna de Cladocera (crustacea: branchiopoda) de la Ciénaga Grande de Santa Marta, Colombia. INVEMAR. 2012;41(1):121-164.spa
dc.relation.referencesGándara M, Leite R, Caraballo P. Historia de vida de Daphnia magna y Ceriodaphnia reticulata en condiciones de laboratorio: uso potencial como alimento para peces. Rev Colombiana Cienc. Anim. 2013;5(2):340-357.spa
dc.relation.referencesGhazy M, Habashy M, Mohammady Y. Effects of pH on survival, growth and reproduction rates of the crustacean, Daphnia magna. Aust J Basic & Appl Sci. 2011;5(1):1-10.spa
dc.relation.referencesGonzález A. El Plancton de las aguas continentales. Secretaria general de la O.E.A. Serie de Biología; Monografía No. 33 Washington D.C. 1988.spa
dc.relation.referencesGuillard RRL, Ryther JH. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol.1962;8(2):229-239.spa
dc.relation.referencesGüntzel AM, Matsumura-Tundisi T, Rocha O. Life cycle of Macrothrix flabelligera Smirnov, 1992 (Cladocera, Macrothricidae), recently reported in the Neotropical region. Hydrobiologia. 2003;490(1):87-92.spa
dc.relation.referencesGuamán M, González N. 2016. Catálogo de microalgas y cianobacterias de agua dulce del Ecuador. Corporación Para La Investigación Energética. p.143. Huang X, Shi X, Xu S, Liu G, Ma L, Sun Z. Life history characteristics of Macrothrix rosea (Jurine, 1820) (Cladocera, Macrothricidae) in laboratory conditions. J Limnol. 2011;70(2):248-254.spa
dc.relation.referencesIsmail N, Qin G, Seuront L. Regulation of life history in the brackish cladoceran, Daphniopsis australis (Sergeev and Williams, 1985) by temperature and salinity. J Plankton Res. 2011;33(5):763-777.spa
dc.relation.referencesJi G, Havens K, Beaver J, Fulton R. Response of Zooplankton to Climate Variability: Droughts Create a Perfect Storm for Cladocerans in Shallow Eutrophic Lakes. Water. 2017;9(764):1-20.spa
dc.relation.referencesKar S, Das P, Das U, Bimola M, Kar D, Aditya G. Culture of the zooplankton as fish food: observations on three freshwater species from Assam, India. Aquacult Aquarium Conserv Legis. 2017;10(5):1210-1220.spa
dc.relation.referencesKhudyi O, Kushniryk O, Khuda L, Marchenko M. Differences in Nutritional Value and Amino Acid Composition of Moina macrocopa (Straus) Using Yeast Saccharomyces cerevisiae and Rhodotorula glutinis as Fodder Substrates. Int Lett Nat Sci. 2018;68:27-34.spa
dc.relation.referencesLuna-Figeroa J, Arce E. Un menú diverso y nutritivo en la dieta de peces: “El alimento vivo”. Agroproductividad. 2017;10(9):112-116.spa
dc.relation.referencesMarinho M, Lage O, Antunes S. Adecuacy of planctomycetes as supplementary food source for Daphnia magna. Antonie van Leeuwenhoek. 2017;111(6): 825-840.spa
dc.relation.referencesMartínez-Jerónimo F, Ventura-López C. Population dynamics of the tropical cladoceran Ceriodaphnia rigaudi Richard, 1894 (Crustacea: Anomopoda). Effect of food type and temperature. J Environ Biol. 2011;32(1):513-521.spa
dc.relation.referencesMellisa S, Rahimi SAE, Umiati U. The effect of different live feeds on the growth and survival of comet goldfish Carrasius auratus larvae. In IOP Conference Series: Environ Earth Sci. 2018;216(1):12-25.spa
dc.relation.referencesMuñoz M, Medina V, Cruz-Casallas P. Efecto del fotoperiodo y del alimento sobre la productividad de dos cladóceros nativos (Moina sp. y Diaphanosoma sp.) de la Orinoquia colombiana. Rev. U.D.C.A Actualidad & Divulgación Científica, 2013;16(1):167-174.spa
dc.relation.referencesOtero A, Muñoz M, Medina V, Cruz P. Efecto del alimento sobre variables productivas de dos especies de Cladóceros bajo condiciones de laboratorio. Rev MVZ Córdoba. 2013;18(1):3642-3647.spa
dc.relation.referencesPérez I, Villar A, Vargas M, Hernández-Vergara M, Pérez-Rostro C, Clemente A. Influencia de la temperatura y tipo de alimento en la historia de vida de Ceriodaphnia cornuta Sars (1885) (Crustacea: Cladocera). Revista Investigación y Ciencia- UAA. 2015;(64):11-18.spa
dc.relation.referencesPrieto-Guevara M. 2013. Plancton regional y su potencial en acuicultura. Temas clave para la acuicultura. Centro de Investigaciones Piscícolas CIUC. Fondo editorial Universidad de Córdoba. ISBN 978-958-9244-61-6. Montería, Colombia. Primera edición. p.179.spa
dc.relation.referencesRottmann R, Graves J, Watson C, Yanong R. 2011. Culture Techniques of Moina: The Ideal Daphnia for Feeding Freshwater Fish Fry. IFAS CIR: 1054.spa
dc.relation.referencesSaha H, Wisdom K, Devi A, Devi S, Kamei M, Biswas A, et al. Effects of Water pH on Life History Parameters of a New Bosminid Cladocera: Bosmina (Bosmina) Tripurae (Korinek, Saha and Bhattachaya, 1999) in Laboratory Condition. Bull Environ Contam Toxicol. 2017;99(1):23-26.spa
dc.relation.referencesSilva E, Abreu C, Orlando T, Wisniewski C, Santos-Wisniewski M. Alona iheringula Sinev & Kotov, 2004 (Crustacea, Anomopoda, Chydoridae, Aloninae): Life Cycle and DNA Barcode with Implications for the Taxonomy of the Aloninae Subfamily. PLoS ONE. 2014;9(5):1-7.spa
dc.relation.referencesSilva-Benavides A. Evaluación de fertilizantes agrícolas en la productividad de la microalga Chlorella sorokiniana. Agron Mesoam. 2016;27(2):265-275.spa
dc.relation.referencesSipaúba-Tavares L, Truzzi B, Berchielli-Morais F. Growth and development time of subtropical Cladocera Diaphanosoma birgei Korinek, 1981 fed with different microalgal diets. Rev Braz J Biol. 2014;74(2):464-471.spa
dc.relation.referencesTian W, Zhang H, Zhang J, Zhao L, Miao M, Huang H. Responses of Zooplankton Community to Environmental Factors and Phytoplankton Biomass in Lake Nansihu, China. Pakistan J Zool. 2017;49(2):461-470.spa
dc.relation.referencesVásquez-Suárez A, Guevara M, González M, Cortez R, Arredondo-Vega B. Crecimiento y composición bioquímica de Thalassiosira pseudonana (Thalassiosirales: Thalassiosiraceae) bajo cultivo semi-continuo en diferentes medios y niveles de irradiancias. Rev Biol Trop. 2013;61(3):1003-1013.spa
dc.relation.referencesViti T, Wisniewski C, Orlando T, Santos-Wisniewski M. Life history, biomass and production of Coronatella rectangular (Branchiopoda, Anomopoda, Chydoridae) from Minas Gerais. Iheringia, Se Zoologia. 2013;103(2):110-117.spa
dc.relation.referencesWang Y, Xie N, Wang W. Effects of algal concentration and initial density on the population growth of Diaphanosoma celebensis Stingelin (Crustacea, Cladocera). Chin J Oceanol Limn. 2009;27(3):480-486.spa
dc.relation.referencesWei J, Zhao W, Wang S, Wang M, Wang X, Ji S, An H. Effect of temperature, salinity, and body length on the energy budget of Daphniopsis tibetana Sars (Cladocera: Daphniidae). Journal of Oceanology and Limnology (JOL). 2018;36(5):1812-1824.spa
dc.rightsOrinoquia - 2019spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/571spa
dc.subjectSaline stresseng
dc.subjectfabaceaeeng
dc.subjectphysiology y Leguminosae.eng
dc.subjectPlant physiologyeng
dc.subjectEstrés salinospa
dc.subjectfabaceaespa
dc.subjectfisiología y leguminosae.spa
dc.subjectFisiología vegetalspa
dc.titleCrecimiento poblacional de Macrothrix spinosa alimentada con Chlorella sp.spa
dc.title.translatedPopulation growth of Macrothrix spinosa fed with Chlorella sp.eng
dc.typeArtículo de revistaspa
dc.typeJournal Articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.localSección Ciencias agrariasspa
dc.type.localSección Agricultural scienceseng
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication

Archivos