Publicación:
Uso de fertilizante comercial en la cinética celular de Desmodesmus opoliensis (Chlorophyceae), reporte preliminar

dc.contributor.authorBurgos Rada, Cristian A.spa
dc.contributor.authorRamírez-Merlano, Juan A.spa
dc.contributor.authorJiménez-Forero, Javier A.spa
dc.date.accessioned2016-12-16T00:00:00Z
dc.date.accessioned2024-07-25T18:14:38Z
dc.date.available2016-12-16T00:00:00Z
dc.date.available2024-07-25T18:14:38Z
dc.date.issued2016-12-16
dc.description.abstractLas microalgas son microorganismos fotosintéticos reconocidos por su producción de vitaminas, carbohidratos, pigmentos y lípidos. Sin embargo, esta producción es afectada por la composición de nutrientes micro y macrominerales en el sistema de cultivo, que para algunos casos constituyen altos costos, un 70% en la producción de microalgas. El objetivo de este estudio fue evaluar un fertilizante edáfico comercial como medio de cultivo para la microalga Desmodesmus opoliensis y su efecto en la cinética celular. Para esto, se utilizó como medio comercial Remital® en cultivos estáticos, evaluando un total de cuatro concentraciones (0.5; 1.0; 1.5 y 2.0 gr/l de agua destilada), este medio de cultivo fue comprando con el medio F/2 Guillard (1 ml/l) por triplicado para cada medio de cultivo (n=3). Para determinar la curva cinética y su comportamiento, la densidad celular (cel/ml) se llevó a cabo por medio de conteo celular en cámara de Neubauer y las clorofilas totales (μg/ml) por espectrofotometría, a una tempertura de cultivo de 242 °C y un fotoperiodo de 12:12 (Luz:Oscuridad) durante 14 días. El F/2 Guillard alcanzó una densidad celular máxima de 4.33±1.96 (106 cel/ml). El tratamiento con concentraciones de 2 g/l, mostró el mayor crecimiento con un promedio de 2.9x106 cel/m, sin diferencias estadísticas significativas al ser comparado con las diferentes concentraciones del fertilizante comercial Remital® (P>0.05). Estos resultados confirman y permiten el uso de fertilizantes no convencionales como el Remital® en la producción de Desmodesmus opolienis.spa
dc.description.abstractThe microalgae are photosynthetic microorganisms recognized for their production of vitamins, carbohydrates, pigments and lipids. However, this production is affected by the composition of micro and macro nutrients in the culture system,which in some cases constitute high costs, 70% in the production of microalgae. The objective of this study was to evaluate a commercial edaphic fertilizer as a culture medium for the microalgae Desmodesmus opoliensis and its effect on cell kinetics. For this, Remital® was used as a commercial medium in static cultures, evaluating a total of four concentrations (0.5, 1.0, 1.5 and 2.0 gr/l of distilled water), this culture medium was purchased with the Guillard F/2 medium (1 ml/l) in triplicate for each culture medium (n= 3). To determine the kinetic curve and its behavior, the cell density (cel/ml) was carried out by means of cell count in Neubauer chamber and total chlorophylls (μg/ml) by spectrophotometry, at a culture temperature of 24 ± 2 °C and a photoperiod of 12:12 (light:dark) for 14 days. The Guillard F/2 reached a maximum cell density of 4.33±1.96 (106 cells/ml). The treatment with concentrations of 2 g/l, showed the highest growth with an average of 2.9x106 cel/ml, without significant statistical differences when compared with the different concentrations of the commercial fertilizer Remital® (P>0.05). These results confirm and allow the use of unconventional fertilizers such as Remital® in the production of Desmodesmus opolienis.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.22579/20112629.438
dc.identifier.eissn2011-2629
dc.identifier.issn0121-3709
dc.identifier.urihttps://repositorio.unillanos.edu.co/handle/001/3910
dc.identifier.urlhttps://doi.org/10.22579/20112629.438
dc.language.isospaspa
dc.publisherUniversidad de los Llanosspa
dc.relation.bitstreamhttps://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/438/1028
dc.relation.citationendpage25
dc.relation.citationissue2 Supspa
dc.relation.citationstartpage18
dc.relation.citationvolume20spa
dc.relation.ispartofjournalOrinoquiaspa
dc.relation.referencesAn JY, Sim SJ, Lee JS, Kim BW. Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii. Appl Phycol. 2003;15(2-3):185-191.spa
dc.relation.referencesAslan S, Kapdan IK. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng. 2006;28:64-70.spa
dc.relation.referencesBelay A, Ota Y, Miyakawa K, Shimamatsu H. Current knowledge on potential health benefits of Spirulina. J Appl Phycol. 1993;5:235-241.spa
dc.relation.referencesBhatnagar A, Chinnasamy S, Singh M, Das KC. Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl Energy. 2011;88:3425-3431.spa
dc.relation.referencesChong AMY, Wong YS, Tam NFY. Performance of different microalgal species in removing nickel and zinc from industrial waste water. Chemosphere. 2000; 41:251-257.spa
dc.relation.referencesDomínguez-Bocanegra AR, Legarreta IG, Jeronimo FM, Campocosio AT. Influence of environmental and nutritional factors in the production of astaxanthin from Haematococcus pluvialis. Bioresource Technol. 2004.92(2): 209-214.spa
dc.relation.referencesEspinosa I, Lorenzo M, Riverón Y, Álvarez E, Villoch A. Evaluación de diferentes medios líquidos para el cultivo de Gardnerella vaginalis y caracterización del perfil de proteína por electroforesis PAGE-SDS. Rev Cubana Med Trop. 2003;5(2):69-75.spa
dc.relation.referencesEstrada CA, Noguera YC, Lopez JE. 2010. Desarrollo tecnológico prototipo para la producción de biodiesel a partir de microalgas en sistemas cerrados, como biocombustible de segunda generación. In Eighth LACCEI Latin American and Caribbean Conference for Engineering and Technology, Arequipa.spa
dc.relation.referencesFaria de ACE, Hayashi C, Soares CM, Furuya WM. Dinâmica da comunidade fitoplanctônica e variáveis físicas e químicas em tanques experimentais submetidos a diferentes adubações orgânicas. Acta Scientiarum. 2001;23:291-297.spa
dc.relation.referencesFernández C, Gauna MC, Croce ME, Parodi ER. Primer registro de Spermatozopsis similis (Chlorophyta) en un ambiente marino. Rev Mex Biodivers. 2014;85(2):606-609.spa
dc.relation.referencesFerrera-Cerrato R, Rojas-Avelizapa NG, Poggi-Varaldo HM, Alarcón A, Cañizares-Villanueva RO. Procesos de biorremediación de suelo y agua contaminados por hidrocarburos del petróleo y otros compuestos orgánicos. Rev Latinoam Microbiol. 2006;48(2):179-187.spa
dc.relation.referencesGärtner G. Algal Culturing Techniques. Andersen R.A. (Eds.). Academic Press, Burlington, San Diego, London, (2005), ISBN: 0-12-088426-7. J Plant Physiol. 2008;165(3):350-352.spa
dc.relation.referencesGoldberg IK, Cohen Z. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry. 2006;67:696-701.spa
dc.relation.referencesGuiry MD, Guiry GM. 2016. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available at: http://www.algaebase.org [Accessed September 30, 2016].spa
dc.relation.referencesGuillard R, Ryther J. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol. 1962;8(2):229-239.spa
dc.relation.referencesHumberto GP, Román DLVS. 2008. Analisís y diseño de experimentos Second Edi., Mexico D.F.spa
dc.relation.referencesJohn DM, Whitton BA, Brook AJ. 2002. The freshwater algal flora of the British Isles: an identification guide to freshwater and terrestrial algae, Vol. 1, Cambridge University Press.spa
dc.relation.referencesJohn DM, Whitton BA, Brook AJ. 2011. The freshwater algal flora of the British Isles: an identification guide to freshwater and terrestrial algae (Eds.). (Vol. 2). Cambridge University Press.spa
dc.relation.referencesKim MK, Giraud G. Characters of neutral lipids of Detonula sp. in culture. Korean. J Phycol. 1989;4:55-61.spa
dc.relation.referencesKim MK, Smith RE. Effect of ionic copper toxicity on the growth of green alga. J Microbiol Biotechnol. 2001;11(2):211-216.spa
dc.relation.referencesKim MK, Park JW, Park CS, Kim SJ, Jeune KH, Chang MU, Acreman J. Enhanced production of Scenedesmus spp. (green microalgae) using a new medium containing fermented swine wastewater. Bioresour Technol. 2007;98(11):2220-2228.spa
dc.relation.referencesKoller M, Alerno A, Tuffner P , Koinigg M, Böchzelt H , Schober S, Pieber S, Schnitzer H, Mittelbach M, Braunegg G. “Characteristics and Potential of Micro Algal Cultivation Strategies: A Review.” J Clean Prod. 2012;37:377-88.spa
dc.relation.referencesLi Y, Zhou W, Hu B, Min M, Chen P, Ruan RR. Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: Strains screening and significance evaluation of environmental factors. Bioresour Technol. 2011;102(23):10861-10867.spa
dc.relation.referencesLim CY, Yoo YH, Sidharthan M, Ma CW, Bang IC, Kim JM, Lee KS, Park NS, Shin HW. Effects of copper (I) oxide on growth and biochemical compositions of two marine microalgae. J Environ Biol. 2006;27:461-466.spa
dc.relation.referencesMata MT, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev. 2010;14(1):217-232.spa
dc.relation.referencesMcLachlan J. 1973. Growth media – marine. In: Stein, J.R. (Ed.), Handbook of Phycological Methods – Culture Methods and Growth Measurements. Cambridge University Press, Cambridge, pp. 25–51.spa
dc.relation.referencesMorris-Quevedo HJ, Quintana-Cabrales MM, Almarales-Arceo A, Hernandez- Nazario L. Composición bioquímica y evaluación de la calidad proteica de la biomasa autotrófica de Chlorella vulgaris. Revista Cubana de Alimentación y Nutrición. 1999;13:123-128.spa
dc.relation.referencesMuñoz-Peñuela M, Ramirez-Merlano J, Otero-Paternina A, Medina-Robles V M, Cruz-Casallas PE, Velasco-Santamaria Y. Effect of culture medium on growth and protein content of Chlorella vulgaris. Rev Colomb Cienc Pec. 2012;25:438-449.spa
dc.relation.referencesNichols HW. 1973. Growth media – freshwater. In: Stein, J.R. (Ed.), Handbook of Phycological Methods – Culture Methods and Growth Measurements. Cambridge University Press, Cambridge, pp. 7–24.spa
dc.relation.referencesNieves-Soto M, Cortes-Altamirano R, Gutiérrez-Corona C, Pacheco-Marges M. Producción de fitoplancton a bajo costo. 1. Aislamiento y cultivo de Monoraphidium sp. (Chlorophyceae) en un sistema estático en medio F y cuatro a base de fertilizantes agrícolas. An Inst Cienc Mar Limnol. 1994;21:119-127.spa
dc.relation.referencesOrtiz-Moreno ML, Cortés-Castillo CE, Sánchez-Villarraga J, Padilla J, Otero-Paternina AM. Evaluación del crecimiento de la microalga Chlorella sorokiniana en diferentes medios de cultivo en condiciones autotróficas y mixotróficas. Orinoquia. 2012;16(1):12-20.spa
dc.relation.referencesPacheco-Ruíz I, Zertuche-González JA, Arroyo-Ortega E, Valenzuela-Espinoza E. Agricultural fertilizers as alternative culture media for biomass production of Chondracanthus squarrulosus (Rhodophyta, Gigartinales) under semi-controlled conditions. Aquaculture. 2004;240(1-4):201-209.spa
dc.relation.referencesPiña P, Medina MA, Nieves M, Leal S, López-Elías JA, Guerrero MA. Cultivo de cuatro especies de microalgas con diferentes fertilizantes utilizados en acuicultura. Rev Invest Mar. 2007;28(3):225-236.spa
dc.relation.referencesRitchie RJ. Universal chlorophyll equations for estimating chlorophylls a, b, c and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica. 2008;46(1):115-126.spa
dc.relation.referencesRodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng. 2009;102(1):100-112.spa
dc.relation.referencesSánchez-Torres H, Juscamaita-Morales J, Vargas-Cárdenas J, Oliveros-Ramos R. Producción de la microalga Nannochloropsis oculata (Droop) Hibberd en medios enriquecidos con ensilado biológico de pescado. Ecología Aplicada. 2008;7(1-2):149-158.spa
dc.relation.referencesScott SA, Davey, MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG, Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol. 2010;21: 277-286.spa
dc.relation.referencesSilveira ST, Daroit DJ, Brandelli A. Pigment production by Monascus purpureus in grape waste using factorial design. LWT-Food Sci Technol. 2008;41(1):170-174.spa
dc.relation.referencesSipauba-Tavares LH, Rocha O. 2003. Produção de Plancton (Fitoplancton e Zooplancton) para alimentação de Organismos Aquáticos. São Carlos, Brasil: RiMa editora.spa
dc.relation.referencesSoletto D, Binaghi L, Ferrari L, Lodi A, Carvalho JCM, Zilli M, Converti A. Effects of carbon dioxide feeding rate and light intensity on the fed-batch pulse feeding cultivation of Spirulina platensis in helical photobioreactor. Biochem Eng J. 2008;39(2):369-375.spa
dc.relation.referencesValenzuela-Espinoza E, Lafarga-de la Cruz F, Millán-Núñez R, Núñez-Cebrero F. Crecimiento, consumo de nutrientes y composición proximal de Rhodomonas sp. cultivada con medio f/2 y fertilizantes agrÌcolas. Cienc Mar. 2005;31:79-89.spa
dc.relation.referencesXenopoulos MA, Frost PC, Elser JJ. Joint effects of UV radiation and phosphours supply on algal growth rate and elemental composition. Ecology. 2002;83(2):423-435.spa
dc.relation.referencesXin L, Hong-ying H, Ke G, Ying-xue S. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol. 2010;101(14):5494-5500.spa
dc.rightsOrinoquia - 2019spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/438spa
dc.subjectchlorophylleng
dc.subjectcell densityeng
dc.subjectedaphiceng
dc.subjectmicroalgaeeng
dc.subjectpigmentseng
dc.subjectclorofilaeng
dc.subjectdensidade celulareng
dc.subjectedáficaseng
dc.subjectmicroalgaseng
dc.subjectpigmentoseng
dc.subjectclorofilaspa
dc.subjectdensidad celularspa
dc.subjectedáficospa
dc.subjectmicroalgaspa
dc.subjectpigmentosspa
dc.titleUso de fertilizante comercial en la cinética celular de Desmodesmus opoliensis (Chlorophyceae), reporte preliminarspa
dc.title.translatedUse of commercial fertilizer in the cell kinetics of Desmodesmus opoliensis (Chlorophyceae), preliminary reporteng
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.localJournal articleeng
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublicationspa

Archivos