Publicación:
Las generaciones de las vacunas: Caso de vacunas antiparasitarias gastrointestinales utilizadas en Medicina Veterinaria

dc.contributor.authorPrieto Prieto, Laura Danielaspa
dc.contributor.authorVargas Borda , Lina Mariaspa
dc.contributor.authorJaramillo Hernández, Dumar Alexander
dc.date.accessioned2021-12-15T00:00:00Z
dc.date.accessioned2024-09-23T20:46:38Z
dc.date.available2021-12-15T00:00:00Z
dc.date.available2024-09-23T20:46:38Z
dc.date.issued2021-12-15
dc.description.abstractLas vacunas son el pilar fundamental de la medicina preventiva y la base para posibles planes de control y/o erradicación de enfermedades, especialmente las infecciosas. Los parásitos internos en los animales de producción y de compañía continúan siendo una de las principales amenazas para la salud y el bienestar animal con importantes implicaciones económicas, además de su impacto en la salud pública mundial. Su control se ha basado casi exclusivamente en fármacos quimioterápicos, que desde hace varios años han perdido su eficacia y existen claros ejemplos de resistencia parasitaria a ellos. Hay pocos ejemplos comerciales de vacunas de parásitos gastrointestinales disponibles comercialmente para su uso en la práctica de la Medicina Veterinaria. Esta revisión describe algunos ejemplos comerciales de vacunas gastrointestinales antiparasitarias para su formulación en la práctica médica veterinaria, visto desde la perspectiva de “las generaciones de vacunas” y respaldado por estudios clínicos experimentales de antígenos prometedores para el control profiláctico de ciertos agentes parasitarios gastrointestinales de interés en salud pública principalmente. Hasta la fecha, está disponible con ciertas limitaciones comerciales en algunos países europeos y oceánicos Barbervax® y en países sudamericanos Providean® Hidatil EG95 para uso en rumiantes para el control de Haemonchus contortus y Echinococcus granulosus, respectivamente; en algunos países de América y África, Cysvax™ está disponible para el control de Taenia solium en cerdos; y en el mundo con muy pocas limitaciones, una serie de vacunas comerciales para el control de la coccidosis como la Eimeria spp. en la industria avícola: pavos, pollos de engorde y gallinas ponedoras (ej: CocciVac®, Immucox®, Paracox®, entre otros). Existe la necesidad de tener estos tipos de vacunas en todos los países donde estos parásitos gastrointestinales son endémicos y de esta manera brindar opciones para su control, por consiguiente, una serie de inversiones económicas son necesarias para apoyar el desarrollo técnico-científico en torno al desarrollo de nuevos biológicos (nueva generaciones de vacunas) efectivos y seguros para el control de los parásitos internos más relevantes en animales de producción y de compañía.spa
dc.description.abstractVaccines are the fundamental pillar of preventive medicine and the basis for possible control and/or eradication of disease plans, especially infectious diseases. Internal parasites in production and companion animals continue to be one of the main threats to animal health and welfare with important economic implications, in addition to its impact on global public health. Its control has been based almost exclusively on chemotherapeutic drugs, which for several years have lost their efficacy and there are clear examples of parasitic resistance to them. Even so, few commercial examples of gastrointestinal parasite vaccines are commercially available for use in the practice of Veterinary Medicine. This review describes some commercial examples of gastrointestinal antiparasitic vaccines for their formulation in veterinary medical practice seen from the perspective of “the generations of vaccines'' and supported by experimental clinical studies of promising antigens for the prophylactic control of certain gastrointestinal parasitic agents of interest in public health mainly. To date, it is available with certain commercial limitations in some European and Australian countries Barbervax® and in South American countries Providean® Hidatil EG95 for use in ruminants for the control of Haemonchus contortus and Echinococcus granulosus, respectively; in some countries in America and Africa, Cysvax™ is available for the control of Taenia solium in pigs and in the world with very few limitations, a series of commercial vaccines for the control of coccidosis (Eimeria spp.) in poultry industry: turkeys, broilers and laying hens (e.g., CocciVac®, Immucox®, Paracox®, among others). There is a need to provide this type of vaccine to all countries where these gastrointestinal parasites are endemic and, in this way, provide options for their control. As well as a series of economic investments is highly necessary to support technical-scientific development around development of new effective and safe biologicals (new generations of vaccines) for the control of the most relevant internal parasites in production and companion animals.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.22579/22484817.879
dc.identifier.eissn2248-4817
dc.identifier.urihttps://repositorio.unillanos.edu.co/handle/001/4367
dc.identifier.urlhttps://doi.org/10.22579/22484817.879
dc.language.isospaspa
dc.publisherUniversidad de los Llanosspa
dc.relation.bitstreamhttps://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/download/879/945
dc.relation.citationeditionNúm. 2 , Año 2021 : Julio-Diciembrespa
dc.relation.citationendpage96
dc.relation.citationissue2spa
dc.relation.citationstartpage74
dc.relation.citationvolume12spa
dc.relation.ispartofjournalRevista Sistemas de Producción Agroecológicosspa
dc.relation.referencesBabu S, Nutman T. Immune Responses to Helminth Infection. Clinical Immunology, 2019:437-447.spa
dc.relation.referencesBagnoli F, Baudner B, Mishra P, Bartolini E, Fiaschi L, Mariotti P, Nardi-Dei V, Boucher P, Rappuoli R. Designing the next generation of vaccines for global public health. Omics: a journal of integrative biology, 2011;15(9):545–566.spa
dc.relation.referencesBąska P, Wiśniewski M, Krzyżowska M, Długosz E, Zygner W, Górski P, Wędrychowicz H. Molecular cloning and characterisation of in vitro immune response against astacin-like metalloprotease Ace-MTP-2 from Ancylostoma ceylanicum. Experimental parasitology, 2013;133(4):472–482.spa
dc.relation.referencesBassetto C, Picharillo É, Newlands F, Smith D, Fernandes S, Siqueira R, Amarante F. Attempts to vaccinate ewes and their lambs against natural infection with Haemonchus contortus in a tropical environment. International journal for parasitology, 2014;44(14):1049–1054.spa
dc.relation.referencesBethony M, Cole N, Guo X, Kamhawi S, Lightowlers W, Loukas A, Petri W., Reed S, Valenzuela G, Hotez J. Vaccines to combat the neglected tropical diseases. Immunological reviews, 2011;239(1):237–270.spa
dc.relation.referencesBomford R. Adjuvants for anti-parasite vaccines. Parasitology today (Personal ed.), 1989;5(2):41–46.spa
dc.relation.referencesCalamante, G. Desarrollo de vacunas de nueva generación Desarrollo de vacunas de nueva generación, 2018. Disponible en: http://ria.inta.gob.ar/contenido/desarrollo-de-vacunas-de-nueva-generacion-para-uso-veterinario?l=esspa
dc.relation.referencesChambers A, Graham P, La Ragione M. Challenges in Veterinary Vaccine Development and Immunization. Methods in molecular biology (Clifton, N.J.), 2016;1404:3–35.spa
dc.relation.referencesClem S. Fundamentals of vaccine immunology. Journal of global infectious diseases, 2011;3(1):73–78.spa
dc.relation.referencesCoban C, Koyama S, Takeshita F, Akira S, Ishii J. Molecular and cellular mechanisms of DNA vaccines. Human vaccines, 2008;4(6):453–456.spa
dc.relation.referencesCox C, Coulter R. Adjuvants--a classification and review of their modes of action. Vaccine, 1997;15(3):248–256.spa
dc.relation.referencesCruz V, Rosado E, Dumonteil E. Desarrollo de vacunas contra parásitos. Revista Ciencia, 2017;68(1):81-85.spa
dc.relation.referencesDalton P, Mulcahy G. Parasite vaccines--a reality?. Veterinary parasitology, 2001;98(1-3):149–167.spa
dc.relation.referencesDhama K, Mahendran M, Gupta K, Rai A. DNA vaccines and their applications in veterinary practice: current perspectives. Veterinary research communications, 2008;32(5),341-356.spa
dc.relation.referencesDi Pasquale A, Preiss S, Tavares Da Silva F, Garçon N. Vaccine Adjuvants: from 1920 to 2015 and Beyond. Vaccines, 2015;3(2):320–343.spa
dc.relation.referencesDunham P. The application of nucleic acid vaccines in veterinary medicine. Research in veterinary science, 2002;73(1):9–16.spa
dc.relation.referencesEast J, Berrie A, Fitzgerald J. Oesophagostomum radiatum: successful vaccination of calves with an extract of in vitro cultured larvae. International journal for parasitology, 1988,18(1):125–127.spa
dc.relation.referencesEmery L, McClure J, Wagland M. Production of vaccines against gastrointestinal nematodes of livestock. Immunology and cell biology, 1993;71(5):463–472.spa
dc.relation.referencesFoster N, Berndt A, Lalmanach C, Methner U, Pasquali P, Rychlik I, Velge, P, Zhou X, Barrow P. Emergency and therapeutic vaccination--is stimulating innate immunity an option?. Research in veterinary science, 2012;93(1),7–12.spa
dc.relation.referencesFujiwara T, Zhan B, Mendez S, Loukas A, Bueno L, Wang Y, Plieskatt J, Oksov Y, Lustigman S, Bottazzi E, Hotez P, Bethony M. Reduction of worm fecundity and canine host blood loss mediates protection against hookworm infection elicited by vaccination with recombinant Ac-16. Clinical and vaccine immunology, 2007;14(3):281–287.spa
dc.relation.referencesGauci G, Jayashi M, Gonzalez E, Lackenby J, Lightowlers W. Protection of pigs against Taenia solium cysticercosis by immunization with novel recombinant antigens. Vaccine, 2012;30(26):3824–3828.spa
dc.relation.referencesGoldsby A, Kindt J, Osborne A, Kuby J. vaccines. In: Mc Graw Hill,editors. Kuby Immunology, 6th edition, New york: E.Publishing Inc; 2007:475-490.spa
dc.relation.referencesHarrison B, Shakes R, Robinson M, Lawrence B, Heath D, Dempster P, Lightowlers W, Rickard D. Duration of immunity, efficacy and safety in sheep of a recombinant Taenia ovis vaccine formulated with saponin or selected adjuvants. Veterinary immunology and immunopathology, 1999;70(3-4):161–172.spa
dc.relation.referencesHein R, Harrison B. Vaccines against veterinary helminths. Veterinary parasitology, 2005;132(3-4):217–222.spa
dc.relation.referencesHill E, Fetterer H, Romanowski D, Urban Jr. The effect of immunization of pigs with Ascaris suum cuticle components on the development of resistance to parenteral migration during a challenge infection. Veterinary immunology and immunopathology, 1994;42(2):161–169.spa
dc.relation.referencesHotez J, Fenwick A, Savioli L, Molyneux H. Rescuing the bottom billion through control of neglected tropical diseases. Lancet (London, England), 2009;373(9674):1570–1575.spa
dc.relation.referencesJaramillo D, Salazar F, Baquero M, Pinheiro S, Alcantara M. Toxocariasis and Toxocara vaccine: a review. Revista Orinoquia, 2020;24:79-95.spa
dc.relation.referencesJaramillo A, Salazar F, Pacheco C, Pinheiro S, Alcantara M. Protective response mediated by immunization with recombinant proteins in a murine model of toxocariasis and canine infection by Toxocara canis. Vaccine, 2022;40(6):912-923.spa
dc.relation.referencesJorge S, Dellagostin A. The development of veterinary vaccines: a review of traditional methods and modern biotechnology approaches. Biotechnology Research and Innovation, 2017;1(1),6–13.spa
dc.relation.referencesJourdan M, Lamberton L, Fenwick A, Addiss G. Soil-transmitted helminth infections. Lancet. 2018;391(10117):252-265.spa
dc.relation.referencesKlei R. Equine immunity to parasites. The Veterinary clinics of North America. Equine practice, 2000;16(1):69–vi.spa
dc.relation.referencesKlei R, French D, Chapman R, McClure R, Dennis A, Taylor W, Hutchinson W. Protection of yearling ponies against Strongylus vulgaris by foalhood vaccination. Equine veterinary journal. Supplement, 1989;(7):2–7.spa
dc.relation.referencesKnox P, Smith D. Vaccination against gastrointestinal nematode parasites of ruminants using gut-expressed antigens. Veterinary parasitology, 2001;100(1-2), 21–32spa
dc.relation.referencesKrammer, F. SARS-CoV-2 vaccines in development. Nature, 2020;586(7830):516-527.spa
dc.relation.referencesKrieg M. CpG motifs in bacterial DNA and their immune effects. Annual review of immunology, 2002;20(1):709-760.spa
dc.relation.referencesLi J. Zheng J, Gong P, Zhang X. Efficacy of Eimeria tenella rhomboid-like protein as a subunit vaccine in protective immunity against homologous challenge. Parasitology research, 2012;110(3):1139–1145.spa
dc.relation.referencesLi K, Lan Y, Luo H, Shahzad M, Zhang H, Wang L, Zhang L, Liu D, Liu X, Hao Y, Sizhu S, Li J. Prevalence of three Oesophagostomum spp. from Tibetan Pigs analyzed by Genetic Markers of nad1, cox3 and ITS1. Acta parasitologica, 2017;62(1):90–96.spa
dc.relation.referencesLoukas A, Good F. Back to the future for antiparasite vaccines?. Expert review of vaccines, 2013;12(1):1-4.spa
dc.relation.referencesMaizels M, Hewitson P, Smith A. Susceptibility and immunity to helminth parasites. Current opinion in immunology, 2012;24(4):459–466.spa
dc.relation.referencesMarciani J. Effects of immunomodulators on the response induced by vaccines against autoimmune diseases. Autoimmunity, 2017;50(7),393–402.spa
dc.relation.referencesMcVey S, Shi J. Vaccines in veterinary medicine: a brief review of history and technology. The Veterinary clinics of North America. Small animal practice, 2010;40(3),381–392.spa
dc.relation.referencesMeeusen N, Balic A, Bowles V. Cells, cytokines and other molecules associated with rejection of gastrointestinal nematode parasites. Veterinary immunology and immunopathology, 2005;108(1-2):121–125.spa
dc.relation.referencesMeeusen N, Walker J, Peters A, Pastoret P, Jungersen G. Current status of veterinary vaccines. Clinical microbiology reviews, 2007;20(3),489–510.spa
dc.relation.referencesMonahan M, Taylor W, Chapman R, Klei R. Experimental immunization of ponies with Strongylus vulgaris radiation-attenuated larvae or crude soluble somatic extracts from larval or adult stages. The Journal of parasitology, 1994;80(6):911–923.spa
dc.relation.referencesMorrison I, Tomley F. Development of vaccines for parasitic diseases of animals: Challenges and opportunities. Parasite immunology, 2016;38(12):707–708.spa
dc.relation.referencesMunn A, Greenwood A, Coadwell J. Vaccination of young lambs by means of a protein fraction extracted from adult Haemonchus contortus. Parasitology, 1987;94(2):385–397.spa
dc.relation.referencesMurray K. Molecular vaccines against animal parasites. Vaccine, 1989;7(4):291–299.spa
dc.relation.referencesNewton E, Munn A. The development of vaccines against gastrointestinal nematode parasites, particularly Haemonchus contortus. Parasitology today (Personal ed.), 1999;15(3):116–122.spa
dc.relation.referencesPetavy F, Hormaeche C, Lahmar S, Ouhelli H, Chabalgoity A, Marchal T, Azzouz S, Schreiber F, Alvite G, Sarciron E, Maskell D, Esteves A, Bosquet G. An oral recombinant vaccine in dogs against Echinococcus granulosus, the causative agent of human hydatid disease: a pilot study. PLoS neglected tropical diseases, 2008;2(1):125.spa
dc.relation.referencesReinemeyer R, Nielsen K. Parasitism and colic. The Veterinary clinics of North America. Equine practice, 2009;25(2):233–245.spa
dc.relation.referencesRodríguez G, Olivares L. Vacunas parasitarias: un recuento bibliográfico. Revista de Salud Animal, 2019;41(3):08.spa
dc.relation.referencesSalazar F, Santiago F, Santos S, Jaramillo A, da Silva B, Alves V, Silveira F, Barrouin M, Cooper J, Pacheco L, Pinheiro C, Alcantara M. Immunogenicity and protection induced by recombinant Toxocara canis proteins in a murine model of toxocariasis. Vaccine, 2020;38(30):4762–4772.spa
dc.relation.referencesSeib L, Zhao X, Rappuoli R. Developing vaccines in the era of genomics: a decade of reverse vaccinology. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 2012;18(5):109–116.spa
dc.relation.referencesSiefker C, Rickard G. Vaccination of calves with Haemonchus placei intestinal homogenate. Veterinary parasitology, 2000;88(3-4),249–260.spa
dc.relation.referencesSong H, Yan R, Xu L, Song X, Shah A, Zhu H, Li X. Efficacy of DNA vaccines carrying Eimeria acervulina lactate dehydrogenase antigen gene against coccidiosis. Experimental parasitology, 2010;126(2), 224–231.spa
dc.relation.referencesSong X, Xu L, Yan R, Huang X, Shah A, Li X. The optimal immunization procedure of DNA vaccine pcDNA-TA4-IL-2 of Eimeria tenella and its cross-immunity to Eimeria necatrix and Eimeria acervulina. Veterinary parasitology, 2009;159(1):30–36.spa
dc.relation.referencesSun C, Beilke N, Lanier L. Adaptive immune features of natural killer cells. Nature, 2009;457(7229):557–561.spa
dc.relation.referencesSwiderski E, Klei R, Folsom W, Pourciau S, Chapman A, Chapman R, Moore M, McClure R, Taylor W, Horohov W. Vaccination against Strongylus vulgaris in ponies: comparison of the humoral and cytokine responses of vaccinates and nonvaccinates. Advances in veterinary medicine, 1999;41:389–404.spa
dc.relation.referencesTyagi R, Joachim A, Ruttkowski B, Rosa A, Martin C, Hallsworth K, Zhang X, Ozersky P, Wilson K, Ranganathan S, Sternberg W, Gasser B, Mitreva M. Cracking the nodule worm code advances knowledge of parasite biology and biotechnology to tackle major diseases of livestock. Biotechnology advances, 2015;33(6Pt1):980–991.spa
dc.relation.referencesUnnikrishnan M, Rappuoli R, Serruto D. Recombinant bacterial vaccines. Current opinion in immunology, 2012;24(3):337–342.spa
dc.relation.referencesVargas M, Prieto D, Baquero M, Corredor W, Alcantara M, Jaramillo D. Vaccines for gastrointestinal parasites, a pillar of preventive medicine in veterinary practice: Systematic review. Revista de Investigación Agraria y Ambiental, 2022;13(1): 221-251.spa
dc.relation.referencesVersteeg L, Almutairi M, Hotez J, Pollet J. Enlisting the mRNA Vaccine Platform to Combat Parasitic Infections. Vaccines, 2019;7(4),122.spa
dc.relation.referencesVetter V, Denizer G, Friedland R, Krishnan J, Shapiro M. Understanding modern-day vaccines: what you need to know. Annals of medicine, 2018;50(2):110–120.spa
dc.relation.referencesVlaminck J, Martinez M, Dewilde S, Moens L, Tilleman K, Deforce D, Urban J, Claerebout E, Vercruysse J, Geldhof P. Immunizing pigs with Ascaris suum haemoglobin increases the inflammatory response in the liver but fails to induce a protective immunity. Parasite immunology,2011;33(4):250–254.spa
dc.relation.referencesWallach M, Smith C, Petracca M, Miller M, Eckert J, Braun R. Eimeria maxima gametocyte antigens: potential use in a subunit maternal vaccine against coccidiosis in chickens. Vaccine, 1995;13(4):347–354.spa
dc.relation.referencesWedrychowicz H. Antiparasitic DNA vaccines in 21st century. Acta Parasitologica, 2015;60(2):179-189.spa
dc.relation.referencesWorld Health Organization (WHO), Echinococcosis fact sheet, Disponible en: https://www.who.int/news-room/fact-sheets/detail/echinococcosis.2020.spa
dc.relation.referencesXu J, Zhang Y, Tao J. Efficacy of a DNA vaccine carrying Eimeria maxima Gam56 antigen gene against coccidiosis in chickens. The Korean journal of parasitology, 2013;51(2):147–154.spa
dc.relation.referencesZhang W, Zhang Z, Shi B, Li J, You H, Tulson G, Dang X, Song Y, Yimiti T, Wang J, Jones K, McManus P. Vaccination of dogs against Echinococcus granulosus, the cause of cystic hydatid disease in humans. The Journal of infectious diseases, 2006;194(7):966–974.spa
dc.rightsRevista Sistemas de Producción Agroecológicos - 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/view/879spa
dc.subjectInternal parasite managementeng
dc.subjectpublic healtheng
dc.subjectzoonoseeng
dc.subjectManejo integrado de parásitos internosspa
dc.subjectsalud públicaspa
dc.subjectzoonosisspa
dc.subjectManejo integrado de parasitas internosspa
dc.subjectsaúde públicaspa
dc.subjectzoonosespa
dc.titleLas generaciones de las vacunas: Caso de vacunas antiparasitarias gastrointestinales utilizadas en Medicina Veterinariaspa
dc.title.translatedThe generations of the vaccines: Case of gastrointestinal antiparasitic vaccines used in Veterinary Medicineeng
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.localJournal articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublicationspa
person.identifier.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000633925
person.identifier.gsidhttps://scholar.google.com/citations?user=ugMx8ecAAAAJ&hl=es
person.identifier.orcid0000-0003-1377-1747
relation.isAuthorOfPublication3e90075e-e6d7-4a60-9623-0d169fda1eae
relation.isAuthorOfPublication.latestForDiscovery3e90075e-e6d7-4a60-9623-0d169fda1eae

Archivos