Icono govco
  • Español
  • English
  • Iniciar sesión
    ¿Nuevo Usuario? Registrarse ¿Has olvidado tu contraseña?
Logotipo del repositorio Repositorio Digital
  • Inicio
  • Comunidades
  • Navegar
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Ladino-Orjuela, Guillermo"

Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    PublicaciónSólo datos
    Dinámica del Carbono en estanques de peces
    (Universidad de los Llanos, 2010-01-01) Ladino-Orjuela, Guillermo
    Titulo en ingles: Carbondynamicsinaquacultureponds.RESUMEN: En la dinámica del carbono en estanques dedicados a la piscicultura intervienen actividades físicas, químicas y biológicas las cuales transforman el carbono agregado en forma de alimento o de fertilizaciones orgánicas e inorgánicas. La intensificación de la producción de peces, está acompañada del incremento de las entradas de carbono, en forma de alimento. Estas entradas, han excedido la capacidad metabólica del estanque lo que en consecuencia ha derivado en la acumulación de compuestos orgánicos y deterioro de la calidad del agua. Algunas investigaciones muestran que la calidad del agua, ha pasado a constituir la principal limitante en la búsqueda de una mayor intensificación de la producción piscícola. La mayor salida de carbono del sistema productivo está asociada con la evasión gaseosa en forma de CO2 , situación que ubica a los sistemas productivos no como sumideros sino como generadores de huella de carbono El principal medio de retención del CO2 en los estanques de peces, es el fitoplancton. En términos generales el balance de carbono en los sistemas productivos acuícolas es positivo, no obstante es posible lograr una mayor recuperación siendo necesario realizar ajustes a las prácticas de manejo y profundizar en la investigación de la dinámica del mismo. Entre los factores que inciden en la dinámica del Carbono en estanques están las características del alimento y las prácticas de alimentación, la especie cultivada, el recambio de agua, la aireación, la profundidad del estanque y los microorganismos presentes.Palabras clave: Huella de Carbono, sumideros de CO2 Acuicultura en Estanques, Sistema carbonato, Alcalinidad.ABSTRACT:  Aquaculture ponds'carbon dynamicsare dominated by physical, chemical and biological transformations in feed and organic and inorganic fertilisation. Increasedfish productionhas been associated with an increase incarbon inputin the form of fish-feed exceeding ponds'metabolic capacity,thereby leading to water quality deteriorating due toan accumulationof organic compounds Water quality is a major constraint in terms of increasedfish crop density.  The most important carbon loss within aproduction system is associated with CO evaporation;this makes aquaculture ponds become carbon footprints instead of carbon sinks. Phytoplank- ton is the major means of CO2 retentionas it captures both that produced by the respiration of all organisms within a particularpond and within the atmosphere. Aquaculture production systemsusually have a negativeorganic carbon balance; however, higher carbon recovery is possible but this involves adjusting management practiceand increasedresearch into the pertinent dynamics. Feed, feedingpractices, the speciesbeing cultivated, water exchange, aeration, pond depth and the microorganisms living in a pondare factorswhich affect the biogeochemical carboncycle in aquaculture ponds.Key words: Carbon footprint, CO2 sink, pond-basedaquaculture, carbonate system, alkalinity. 2 Enladinámicadelcarbonoenestanquesdedicadosalapisciculturaintervienenactividadesfísicas,químicas ybiológicaslascualestransformanelcarbonoagregadoenformadealimentoodefertilizacionesorgánicase inorgánicas.Laintensificacióndelaproduccióndepeces,estáacompañadadelincrementodelasentradas decarbono,enformadealimento.Estasentradas, hanexcedidolacapacidadmetabólicadelestanqueloque enconsecuenciahaderivadoenlaacumulacióndecompuestosorgánicosydeteriorodelacalidaddelagua. Algunasinvestigacionesmuestranquelacalidaddelagua,hapasadoaconstituirlaprincipallimitanteenla búsquedadeunamayorintensificacióndelaproducciónpiscícola.Lamayorsalidadecarbonodelsistema productivoestáasociadaconlaevasióngaseosaenformadeCO,situaciónqueubicaalossistemasproductivos nocomosumiderossinocomogeneradoresdehuelladecarbono.ElprincipalmedioderetencióndelCOen losestanquesdepeces,eselfitoplancton.Entérminosgeneraleselbalancedecarbonoenlossistemas productivos acuícolasespositivo,noobstanteesposiblelograrunamayor recuperaciónsiendo necesario realizarajustesalasprácticasdemanejoyprofundizarenlainvestigacióndeladinámicadelmismo.Entrelos factoresqueinciden enladinámicadelCarbonoen estanquesestánlascaracterísticasdelalimentoylas prácticasdealimentación,laespeciecultivada, elrecambiodeagua,laaireación,laprofundidaddelestanque ylosmicroorganismospresentes.  2 Palabrasclave:HuelladeCarbono,sumiderosdeCO,AcuiculturaenEstanques,Sistemacarbonato,Alcalinidad. ABSTRACT  2 Aquacultureponds'carbon dynamicsaredominatedbyphysical,chemicalandbiologicaltransformationsin feedandorganicandinorganic fertilisation.Increasedfish productionhas beenassociatedwithanincrease incarboninputintheformoffish-feedexceeding ponds'metaboliccapacity,therebyleadingtowaterquality deterioratingduetoan accumulationoforganiccompounds.Water quality isamajorconstraintintermsof increasedfishcropdensity.  Themostimportantcarbonlosswithinaproductionsystemisassociatedwith COevaporation;thismakesaquaculturepondsbecomecarbonfootprintsinsteadofcarbonsinks.Phytoplank-  
  • Cargando...
    Miniatura
    PublicaciónSólo datos
    Dinámica del Carbono en estanques de peces
    (Universidad de los Llanos, 2010-01-01) Ladino-Orjuela, Guillermo
    Titulo en ingles: Carbondynamicsinaquacultureponds.RESUMEN: En la dinámica del carbono en estanques dedicados a la piscicultura intervienen actividades físicas, químicas y biológicas las cuales transforman el carbono agregado en forma de alimento o de fertilizaciones orgánicas e inorgánicas. La intensificación de la producción de peces, está acompañada del incremento de las entradas de carbono, en forma de alimento. Estas entradas, han excedido la capacidad metabólica del estanque lo que en consecuencia ha derivado en la acumulación de compuestos orgánicos y deterioro de la calidad del agua. Algunas investigaciones muestran que la calidad del agua, ha pasado a constituir la principal limitante en la búsqueda de una mayor intensificación de la producción piscícola. La mayor salida de carbono del sistema productivo está asociada con la evasión gaseosa en forma de CO2 , situación que ubica a los sistemas productivos no como sumideros sino como generadores de huella de carbono El principal medio de retención del CO2 en los estanques de peces, es el fitoplancton. En términos generales el balance de carbono en los sistemas productivos acuícolas es positivo, no obstante es posible lograr una mayor recuperación siendo necesario realizar ajustes a las prácticas de manejo y profundizar en la investigación de la dinámica del mismo. Entre los factores que inciden en la dinámica del Carbono en estanques están las características del alimento y las prácticas de alimentación, la especie cultivada, el recambio de agua, la aireación, la profundidad del estanque y los microorganismos presentes.Palabras clave: Huella de Carbono, sumideros de CO2 Acuicultura en Estanques, Sistema carbonato, Alcalinidad.ABSTRACT:  Aquaculture ponds'carbon dynamicsare dominated by physical, chemical and biological transformations in feed and organic and inorganic fertilisation. Increasedfish productionhas been associated with an increase incarbon inputin the form of fish-feed exceeding ponds'metabolic capacity,thereby leading to water quality deteriorating due toan accumulationof organic compounds Water quality is a major constraint in terms of increasedfish crop density.  The most important carbon loss within aproduction system is associated with CO evaporation;this makes aquaculture ponds become carbon footprints instead of carbon sinks. Phytoplank- ton is the major means of CO2 retentionas it captures both that produced by the respiration of all organisms within a particularpond and within the atmosphere. Aquaculture production systemsusually have a negativeorganic carbon balance; however, higher carbon recovery is possible but this involves adjusting management practiceand increasedresearch into the pertinent dynamics. Feed, feedingpractices, the speciesbeing cultivated, water exchange, aeration, pond depth and the microorganisms living in a pondare factorswhich affect the biogeochemical carboncycle in aquaculture ponds.Key words: Carbon footprint, CO2 sink, pond-basedaquaculture, carbonate system, alkalinity. 2 Enladinámicadelcarbonoenestanquesdedicadosalapisciculturaintervienenactividadesfísicas,químicas ybiológicaslascualestransformanelcarbonoagregadoenformadealimentoodefertilizacionesorgánicase inorgánicas.Laintensificacióndelaproduccióndepeces,estáacompañadadelincrementodelasentradas decarbono,enformadealimento.Estasentradas, hanexcedidolacapacidadmetabólicadelestanqueloque enconsecuenciahaderivadoenlaacumulacióndecompuestosorgánicosydeteriorodelacalidaddelagua. Algunasinvestigacionesmuestranquelacalidaddelagua,hapasadoaconstituirlaprincipallimitanteenla búsquedadeunamayorintensificacióndelaproducciónpiscícola.Lamayorsalidadecarbonodelsistema productivoestáasociadaconlaevasióngaseosaenformadeCO,situaciónqueubicaalossistemasproductivos nocomosumiderossinocomogeneradoresdehuelladecarbono.ElprincipalmedioderetencióndelCOen losestanquesdepeces,eselfitoplancton.Entérminosgeneraleselbalancedecarbonoenlossistemas productivos acuícolasespositivo,noobstanteesposiblelograrunamayor recuperaciónsiendo necesario realizarajustesalasprácticasdemanejoyprofundizarenlainvestigacióndeladinámicadelmismo.Entrelos factoresqueinciden enladinámicadelCarbonoen estanquesestánlascaracterísticasdelalimentoylas prácticasdealimentación,laespeciecultivada, elrecambiodeagua,laaireación,laprofundidaddelestanque ylosmicroorganismospresentes.  2 Palabrasclave:HuelladeCarbono,sumiderosdeCO,AcuiculturaenEstanques,Sistemacarbonato,Alcalinidad. ABSTRACT  2 Aquacultureponds'carbon dynamicsaredominatedbyphysical,chemicalandbiologicaltransformationsin feedandorganicandinorganic fertilisation.Increasedfish productionhas beenassociatedwithanincrease incarboninputintheformoffish-feedexceeding ponds'metaboliccapacity,therebyleadingtowaterquality deterioratingduetoan accumulationoforganiccompounds.Water quality isamajorconstraintintermsof increasedfishcropdensity.  Themostimportantcarbonlosswithinaproductionsystemisassociatedwith COevaporation;thismakesaquaculturepondsbecomecarbonfootprintsinsteadofcarbonsinks.Phytoplank-  
  • Cargando...
    Miniatura
    PublicaciónSólo datos
    Efecto de Lactobacillus casei, Saccharomyces cerevisiae, Rhodopseudomona palustris (microorganismos eficientes em) y melaza en la ganancia de peso de tilapias (Oreochromis sp) en condiciones de laboratorio
    (Universidad de los Llanos, 2009-01-01) Ladino-Orjuela, Guillermo; Rodríguez-Pulido, José A.
    Titulo en ingles:  The effect of lactobacillus casei, saccharomyces cerevisiae, rhodopseudomona palustris (beneficial and effective microorganisms - em) and molasses on tilapia (oreochromis sp) weight-gain in laboratory conditions.RESUMEN:  La combinación de una bacteria acido láctica, una bacteria fototrófica y una levadura también conocida como EM (effective microorganisms), se le reconoce capacidad sinérgica, sintrópica y metabiotica para disminuir de la capacidad contaminante de las aguas servidas. La MO de los estanques acuícolas la cual, normalmente se vierte, podría ser utilizada como sustrato para el crecimiento de los EM. Los microorganismos pueden servir de alimento a los peces y disminuir tanto los vertimientos a los cuerpos de agua como el consumo de alimento concentrado. Se evalúo el efecto de un cultivo comercial de EM en la ganancia de peso de alevinos de tilapia Oreochromis sp. Alevinos (n=10) con un peso promedio de 0,604 ± 0,059 g, fueron ubicados durante un periodo de 2 semanas en 10 contenedores plásticos de 25 litros, en condiciones de laboratorio. Se utilizaron cinco contenedores como control (T1), los cinco restantes (T2) recibieron dos mililitros diarios de un producto comercial compuesto por Lactobacillus casei; Saccharomyces cerevisiae, Rhodopseudomona palustris cada uno con 106 unidades formadoras de colonias suspendidas en una mezcla de melaza y agua. El alimento proporcionado consistió en un producto comercial con 40 % de proteína, la ración alimenticia fue igual al 6 % del peso inicial de los peces. El pH de los contenedores, se mantuvo estable en 6,7, la temperatura en 27 grados y el oxígeno en 7 ppm. No hubo recambio de agua y si aireación permanente. El agua de los contenedores del tratamiento, inicialmente tomó una coloración más oscura, sin embargo para el final del experimento, el agua de los dos tratamientos tenía la misma tonalidad. Los peces, presentaron lesiones oculares posiblemente por la marcada agresividad mostrada durante la investigación. La ganancia de peso con T1 mostró una ganancia de peso de 0.7321 g ± 0.2126 con un coeficiente de variación de 29.05. Para T2 se evidenció una ganancia de peso de 0.8034 gm ± 0.095 con un coeficiente de variación de 11.87. No hubo diferencia estadística significativa p<0.05.Palabras clave: Cero recambio, Microorganismos eficientes, relación C:N,Tilapia.ABSTRACT:  The synergic, syntropic and metabiotic ability of a combination of lactic acid bacteria, phototrophic bacte- ria and yeast (also known as effective microorganisms – EM) to reduce residual water contamination is well recognised. Fish ponds’ organic matter (which would normally be eliminated) could be used as substrate for EM culture. Microorganisms can serve as both fish-food and reduce effluents in water bodies and concentrated food consumption. The effect of a commercial EM culture was evaluated on tilapia (Oreochromis sp) fry weight-gain. Fry (n=10) having an average 0.604 ± 0.059 g weight were placed in ten 25 l plastic containers in laboratory conditions for 2 weeks. Five containers were used as control (T1); the other five (T2) were inoculated daily with 2 ml of a commercial product consisting of Lactobacillus casei, Saccharomyces cerevisiae, Rhodopseudomona palustris, each having 106 colony forming units in water- molasses suspension. The feed provided was a commercial product having 40 % protein (feed ration was equal to 6 % of the fish’ initial weight). Container pH was kept stable at 6.7, temperature at 27°C and oxygen at 7 ppm. There were no water exchanges; there was permanent aeration. Treatment tank water was initially dark; however, when the assay finished all the containers had the same colour. Fish had lesions to their eyes, possibly due to the marked aggressiveness exhibited during the investigation. T1 had 0.7321 g ± 0.2126 weight-gain with 29.05 variation coefficient. T2 had 0.8034 g ± 0.095 weight-gain, 11.87 variation coefficient. No statistical difference was found (p<0.05).Keywords: Zero exchange, Effective microorganisms, C:N ratio, Tilapia.
  • Cargando...
    Miniatura
    PublicaciónSólo datos
    Efecto de Lactobacillus casei, Saccharomyces cerevisiae, Rhodopseudomona palustris (microorganismos eficientes em) y melaza en la ganancia de peso de tilapias (Oreochromis sp) en condiciones de laboratorio
    (Universidad de los Llanos, 2009-01-01) Ladino-Orjuela, Guillermo; Rodríguez-Pulido, José A.
    Titulo en ingles:  The effect of lactobacillus casei, saccharomyces cerevisiae, rhodopseudomona palustris (beneficial and effective microorganisms - em) and molasses on tilapia (oreochromis sp) weight-gain in laboratory conditions.RESUMEN:  La combinación de una bacteria acido láctica, una bacteria fototrófica y una levadura también conocida como EM (effective microorganisms), se le reconoce capacidad sinérgica, sintrópica y metabiotica para disminuir de la capacidad contaminante de las aguas servidas. La MO de los estanques acuícolas la cual, normalmente se vierte, podría ser utilizada como sustrato para el crecimiento de los EM. Los microorganismos pueden servir de alimento a los peces y disminuir tanto los vertimientos a los cuerpos de agua como el consumo de alimento concentrado. Se evalúo el efecto de un cultivo comercial de EM en la ganancia de peso de alevinos de tilapia Oreochromis sp. Alevinos (n=10) con un peso promedio de 0,604 ± 0,059 g, fueron ubicados durante un periodo de 2 semanas en 10 contenedores plásticos de 25 litros, en condiciones de laboratorio. Se utilizaron cinco contenedores como control (T1), los cinco restantes (T2) recibieron dos mililitros diarios de un producto comercial compuesto por Lactobacillus casei; Saccharomyces cerevisiae, Rhodopseudomona palustris cada uno con 106 unidades formadoras de colonias suspendidas en una mezcla de melaza y agua. El alimento proporcionado consistió en un producto comercial con 40 % de proteína, la ración alimenticia fue igual al 6 % del peso inicial de los peces. El pH de los contenedores, se mantuvo estable en 6,7, la temperatura en 27 grados y el oxígeno en 7 ppm. No hubo recambio de agua y si aireación permanente. El agua de los contenedores del tratamiento, inicialmente tomó una coloración más oscura, sin embargo para el final del experimento, el agua de los dos tratamientos tenía la misma tonalidad. Los peces, presentaron lesiones oculares posiblemente por la marcada agresividad mostrada durante la investigación. La ganancia de peso con T1 mostró una ganancia de peso de 0.7321 g ± 0.2126 con un coeficiente de variación de 29.05. Para T2 se evidenció una ganancia de peso de 0.8034 gm ± 0.095 con un coeficiente de variación de 11.87. No hubo diferencia estadística significativa p<0.05.Palabras clave: Cero recambio, Microorganismos eficientes, relación C:N,Tilapia.ABSTRACT:  The synergic, syntropic and metabiotic ability of a combination of lactic acid bacteria, phototrophic bacte- ria and yeast (also known as effective microorganisms – EM) to reduce residual water contamination is well recognised. Fish ponds’ organic matter (which would normally be eliminated) could be used as substrate for EM culture. Microorganisms can serve as both fish-food and reduce effluents in water bodies and concentrated food consumption. The effect of a commercial EM culture was evaluated on tilapia (Oreochromis sp) fry weight-gain. Fry (n=10) having an average 0.604 ± 0.059 g weight were placed in ten 25 l plastic containers in laboratory conditions for 2 weeks. Five containers were used as control (T1); the other five (T2) were inoculated daily with 2 ml of a commercial product consisting of Lactobacillus casei, Saccharomyces cerevisiae, Rhodopseudomona palustris, each having 106 colony forming units in water- molasses suspension. The feed provided was a commercial product having 40 % protein (feed ration was equal to 6 % of the fish’ initial weight). Container pH was kept stable at 6.7, temperature at 27°C and oxygen at 7 ppm. There were no water exchanges; there was permanent aeration. Treatment tank water was initially dark; however, when the assay finished all the containers had the same colour. Fish had lesions to their eyes, possibly due to the marked aggressiveness exhibited during the investigation. T1 had 0.7321 g ± 0.2126 weight-gain with 29.05 variation coefficient. T2 had 0.8034 g ± 0.095 weight-gain, 11.87 variation coefficient. No statistical difference was found (p<0.05).Keywords: Zero exchange, Effective microorganisms, C:N ratio, Tilapia.

Ubicanos:

Campus Barcelona: Km. 12 Vía Puerto López

Campus San Antonio: Calle 37 No. 41-02 Barzal

Campus Emporio: Calle 40 A No. 28-32 Emporio

Horario de atención: Lunes a Viernes

7:30am a 11:30m y 2:00pm a 5:30pm


políticas:

Términos y condiciones de Uso

Estatuto sobre Propiedad Intelectual de la Universidad de los Llanos


©1975 - 2023 Reservados todos los derechos

Nit: 892.000.757-3

Contacto:

Notificaciones judiciales:

[email protected]

Ventanilla única virtual:

[email protected]

Correo electrónico

[email protected]

PQRS:

[email protected]


Lineas de atención:

PBX. (57) 608 6611623

línea nacional 018000 918 641

Whatsapp +57 322 292 31 94

Sistema DSPACE 7 - Metabiblioteca | logo