Mostrar el registro sencillo del ítem

dc.contributor.authorNeira-Rivera, Elianaspa
dc.contributor.authorGutiérrez, Sonia L.spa
dc.contributor.authorCastillo-Barón, Lidy V.spa
dc.contributor.authorVelásquez-Penagos, José G.spa
dc.contributor.authorGóngora-Orjuela, Agustínspa
dc.contributor.authorCardozo-Cerquera, Jaime A.spa
dc.date.accessioned2020-05-11 00:00:00
dc.date.accessioned2022-06-13T17:42:39Z
dc.date.available2020-05-11 00:00:00
dc.date.available2022-06-13T17:42:39Z
dc.date.issued2020-05-11
dc.identifier.issn0121-3709
dc.identifier.urihttps://repositorio.unillanos.edu.co/handle/001/2749
dc.description.abstractEl objetivo de este estudio fue determinar la expresión de proteínas del fluido folicular (FF) y su relación con la calidad del oocito. Se evaluaron 52 ovarios de planta de faenado de vacas Cebú comercial, mediante la técnica de disección y aspiración folicular se obtuvo FF y oocitos. Las evaluaciones realizadas fueron: calidad del oocito por aspecto citoplasmático y células del cúmulos y perfil de proteínas del FF mediante SDS-PAGE. Se realizó el análisis descriptivo, a través del procedimiento MEANS, análisis de varianza (PROC. ANOVA) y para las diferencias estadísticas significativas se usó la prueba de comparación de Bonferroni con un nivel de significancia del 5%, mediante el paquete estadístico SAS®. El 52% de los oocitos se categorizaron con calidad I-II. El análisis unidimensional de las proteínas del FF evidenció la presencia de 25 bandas de proteína entre 9 y 240 kDa. En folículos <3 mm se expresaron 23 bandas, en folículos de 3 y 6 mm 19 bandas y en folículos >6mm 20 bandas. Las bandas de peso molecular (PM) de 26kDa, 57kDa y 68kDa representan la mayor concentración en el FF; 4 bandas de PM 14 KDa, 34 KDa, 76 y 79 KDa, solo en folículos de <3mm, 2 bandas de PM 9 y 91 KDa solo en folículos de >3 mm. La banda de 32 KDa no se observó en folículos > de 6mm. Las bandas de mayor frecuencia de presentación fueron las de 26, 40, 42, 57, 68, 240 KDa. Las bandas de proteína que se asociaron con la calidad del oocito en forma significativa (p<0,05) fueron las de PM 24, 57, 68 y 164 KDa para FF de folículos <3mm y las bandas de PM 13, 26 y 38 kDa entre 3 y 6mm, y la de 26 kDa a folículos > de 6mm. Los resultados nos indican asociaciones de la calidad del oocito con algunas bandas de proteína.spa
dc.description.abstractThis study was aimed at determining follicular fluid (FF) protein expression and its relationship with oocyte quality. FF and oocytes were obtained by dissection and follicular aspiration of the ovaries from fifty-two commercial Zebu from a slaughterhouse. Oocyte quality was measured by cytoplasmic aspect and cumulus cells and FF protein profile by SDS-PAGE. The SAS statistical package’s PROC MEANS and analysis of variance (ANOVA) were used for descriptive analysis and the Bonferroni comparison test for assessing significant statistical differences (5% significance level); 52% of the oocytes were categorised as having I-II quality. One-dimensional SDS-PAGE analysis of FF proteins revealed 25 protein bands having 9 kDa to 240 kDa molecular weight (MW); 23 bands were expressed in <3 mm follicles, 19 bands in 3 and 6 mm follicles and 20 bands in >6 mm follicles. The 26kDa, 57kDa and 68kDa bands’ MW represented the highest FF concentration whereas only four bands (14 kDa, 34 kDa, 76 and 79 kDa MW) were found in <3mm follicles and only 2 bands (9kDa and 91 kDa MW) in >3 mm follicles. The 32 kDa band was not observed in >6mm follicles. The 26, 40, 42, 57, 68 and 240 KDa bands occurred with the greatest frequency. The protein bands which were significantly associated with oocyte quality (p<0.05) were 24, 57, 68 and 164 kDa MW for <3mm follicles, 13, 26 and 38 kDa MW bands for 3 and 6mm follicles and 26 kDa for >6mm follicles. The results indicated oocyte quality association with some protein bands.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad de los Llanosspa
dc.rightsOrinoquia - 2020spa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/598spa
dc.subjectMineralizationeng
dc.subjectpetroleum spillseng
dc.subjectsoil pollutioneng
dc.subjectphytoremediationeng
dc.subjectbioremediationeng
dc.subjectmineralizaciónspa
dc.subjectderrames de petróleospa
dc.subjectcontaminación de suelosspa
dc.subjectfitorremediaciónspa
dc.subjectbiorremediaciónspa
dc.titleExpresión proteica del fluido folicular asociado a la calidad del oocito de vacas Cebúspa
dc.typeArtículo de revistaspa
dc.typeJournal Articleeng
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.localSección Ciencias agrariasspa
dc.type.localSección Agricultural scienceseng
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doi10.22579/20112629.598
dc.relation.referencesAlavi-Shoushtari S, Asri-Rezai S, Abshenas J. A study of the uterine protein variations during the estrus cycle in the cow: A comparison with the serum proteins. Anim Reprod Sci, 2006;96(1-2):10-20spa
dc.relation.referencesAller JF, Callejas SS, Alberio RH. Biochemical and steroid concentrations in follicular fluid and blood plasma in different follicular waves of the estrous cycle from normal and superovulated beef cows. Anim Reprod Sci, 2013;142:113-120spa
dc.relation.referencesAmbekar A, Nirujogi R, Srikanth S, Chavan S, Kelkar D, Hinduja I, et al. Proteomic analysis of human follicular fluid: A new perspective towards understanding folliculogenesis. J Proteomics. 2013;87:68-77spa
dc.relation.referencesAndersen M, Kroll J, Byskov A, Faber M. Protein composition in the fluid of individual bovine follicles. J Reprod Fertil. 1976;48(1):109-118spa
dc.relation.referencesAngelucci S, Ciavardelli D, Di Giuseppe F, Eleuterio E, Sulpizio M, Tiboni GM, et al. Proteome analysis of human follicular fluid. Biochim Biophys Acta - Proteins Proteomics. 2006;1764(11):1775-1785spa
dc.relation.referencesArmstrong D, Hogg C, Campbell B, Webb R. Insulin-like growth factor (IGF)-binding protein production by primary cultures of ovine granulosa and theca cells. The effects of IGF-I, gonadotropin, and follicle size. Biol Reprod. 1996;55(5):1163-1171spa
dc.relation.referencesAustin EJ, Mihm M, Evans ACO, et al. Alterations in Intrafollicular Regulatory Factors and Apoptosis During Selection of Follicles in the First Follicular Wave of the Bovine Estrous Cycle. Biol Reprod. 2001;64:839-848spa
dc.relation.referencesBianchi L, Gagliardi A, Campanella G, Landi C, Capaldo A, Carleo A, et al. A methodological and functional proteomic approach of human follicular fluid en route for oocyte. J Proteom. 2013;90:61-76spa
dc.relation.referencesBijttebier J, Tilleman K, et al. Comparative proteome analysis of porcine follicular fluid and serum reveals that excessive alpha (2)-macroglobulin in serum hampers successful expansion of cumulus-oocyte complexes. Proteomics, 2009;9:4554- 4565spa
dc.relation.referencesBradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-254spa
dc.relation.referencesBriggs D, Sharp D, Miller D, Gosden R. Transferrin in the developing ovarian follicle: evidence for de-novo expression by granulosa cells. Mol Hum Reprod; 1999;5(12):1107-1114spa
dc.relation.referencesClarke H, Hope S, Byers S, Rodgers RJ. Formation of ovarian follicular fluid may be due to the osmotic potential of large glycosaminoglycans and proteoglycans. Reprod. 2006;132(1):119-131spa
dc.relation.referencesColazo MG, Mapletoft RJ. Fisiologia del ciclo estral bovino. Conference Paper. De Jong G, van Dijk JP, van Eijk HG. 1990. The biology of transferrin. Clin Chim Acta. 2014;190(1-2):1-46spa
dc.relation.referencesDekel N. Cellular Biochemical and molecular mechanisms regulating oocyte maturation. Mol cell endocrinol. 2005;235:19-25spa
dc.relation.referencesDriancourt MA. Regulation of ovarian follicular dynamics in farm animals. Implications for manipulation of reproduction. Theriogenology. 2001;55(6):1211-1239spa
dc.relation.referencesDumont J, Umbhauer M, et al. p90Rsk is not involved in cytostatic factor arrest in mouse oocytes. J Cell Biol. 2005;169:227-231spa
dc.relation.referencesFahiminiya S, Reynaud K, Labas V, Batard S, Chastant-Maillard S, Gérard N. Steroid hormones content and proteomic analysis of canine follicular fluid during the preovulatory period. Reprod Biol. 2010;8(1):132spa
dc.relation.referencesFahiminiya S, Labas V, Roche S, Dacheux J, Gérard N. Proteomic analysis of mare follicular fluid during late follicle development. Proteome Sci. 2011;9:54spa
dc.relation.referencesFortune JE, Hansel W. Concentrations of steroids andgonadotroipns in follicular fluid from normal heifers and heifersprimed for superovulation. Biol Reprod. 1985;32:1069-1079spa
dc.relation.referencesFu Q, Huang Y, Wang Z, Chen F, Huang D, Lu Y, et al. Proteome Profile and Quantitative Proteomic Analysis of Buffalo (Bubalusbubalis) Follicular Fluid during Follicle Development. Int J Mol Sci. 2016;17(5):618. Doi: 10.3390/ijms17050618spa
dc.relation.referencesGérard N, Loiseau S, Duchamp G, Seguin F. Analysis of the variations of follicular fluid composition during follicular growth and maturation in the mare using proton nuclear magnetic resonance (1H NMR). Reprod. 2002;124(2):241-248spa
dc.relation.referencesGradela A, Roncoletta M, Morani C, Esper C, Franceschini P. Proteínas ligantes do insulin-like growth factor (IGFBPs) e dominância folicular em vacas Bos taurus indicus puras e cruzadas. Braz J Vet Res Anim Sci. 1998;35(5):218-220spa
dc.relation.referencesHill D J, Growth factors and the ircellular actions. J Reprod Fertil. 1989;85:723-734spa
dc.relation.referencesJans D, Hassan G, Nuclear targeting by growth factors, cytokines and their receptors: a role insignaling?. Bioessays. 1998;20:400- 411 Knight P, Glister C. Local roles of TGF-β superfamily members in the control of ovarian follicle development. Anim Reprod Sci. 2003;78:165-183spa
dc.relation.referencesKubelka M, Motlik J, et al. Butyrolactone I reversibly inhibits meiotic maturation of bovine oocytes, without influencing chromosome condensation activity. Biol Reprod. 2000;62:292-302spa
dc.relation.referencesLaemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.” Nature. 1970;227(259):680-685spa
dc.relation.referencesLeal LS, Moya CF, Fernandes CB, Martins LR, Landim FC, Oba E. 2010. Evaluation of recovery, quality and in vitro nuclear maturation of oocytes obtained from Buffalo and Bovine Ovaries. 9no Congreso de búfalo, Argentina.spa
dc.relation.referencesLeroy J, Vanholder T, Delanghe J, Opsomer G, Van Soom A, Bols P, De Kruif A. Metabolite and ionic composition of follicular fluid from different-sized follicles and their relationship to serum concentrations in dairy cows. Anim Reprod Sci. 2004; 80(3-4):201-211spa
dc.relation.referencesMonget P, Besnard N, Huet C, Pisselet C, Monniaux D. Insulin-like growth factor-binding proteins and ovarian folliculogenesis. Horm Res. 1996;45(3-5):211-217spa
dc.relation.referencesMortarino M, Vigo D, et al. Two-dimensional polyacrylamide gel electrophoresis map of bovine ovarian fluid proteins. Electrophoresis. 1999;20:866-869spa
dc.relation.referencesNandi S, Girish-Kumar V, Manjunatha BM, Gupta PSP. Biochem-ical composition of ovine follicular fluid in relation to follicle size. Dev.Growth Differ. 2007;49:61-66spa
dc.relation.referencesOberst E, Jobim M, Cimarosti H, Souza D, Salbego C, Wald V, Mattos R. Imunoidentificação de Albumina e Osteopontina no Plasma Seminal de Reprodutores Taurinos e Zebuínos. Semina: Ciências Agrárias, 2002;23(1):21-28spa
dc.relation.referencesOtsuka F. Multiple endocrine regulation by bone morphogenetic protein system. Endocr J. 2010;57(1):3-14spa
dc.relation.referencesPetrucci BPL, Wolf CA, Arlas TR, Santos GO, Estanislau JF, Fiala S, Mattos RC. Proteomics of mare follicular fluid during follicle development. J Equine Vet Sci. 2014;34(1):115-116spa
dc.relation.referencesPsilopanagioti A, Papadaki H, Kranioti EF, Alexandrides TK, Varakis JN. Expression of adiponectin and adiponectin receptors in human pituitary gland and brain. Neuroendocrinology; 2009;1:38-47. doi: 10.1159/000151396spa
dc.relation.referencesQuintana MD, Campos PEC, Herrera P, Gallego C, Padrón E. Comparación de dos métodos de recolección de ovocitos inmaduros para fertilización in vitro FIV obtenidos de hembras bubalus bubalis enviadas a matadero. Rev Salud Anim. 2012;34(1):53-56spa
dc.relation.referencesRahman Zia-Ur, Bukhari SA, Ahmad N, Akhtar N, Ijaz A, Yousaf MS, Haq IU. Dynamics of follicular fluid in one-humped camel (Camelus dromedarius). Reprod Domes Anim. 2008;43:664-671spa
dc.relation.referencesRibeiro R, Santos A, Castilho C, Giometti J, Guaberto L, Ambiel A, Giometti I. Perfil proteico do líquido folicular coletado de ovários em diferentes fases do ciclo estral de bovinos. Colloquium Agrariae. 2012;8(2):65-74spa
dc.relation.referencesRizos D, Burke L, Duffy P, Wade M, Mee JF, Farrel KO, et al. Comparisons between nulliparous heifers and cows as oocyte donors for embryo production in vitro. Theriogenology. 2005;63:939-949spa
dc.relation.referencesRodriguez F, Martinez A, Tovar S, Pinilla L, Tena-Sempere M, Dieguez C, et al. Regulation of Pituitary Cell Function by Adiponectin. Endocrinology. 2007;148(1):401-410spa
dc.relation.referencesShabankared HK, Kor NM, Hajarian H. The influence of the corpus luteum on metabolites composition of follicular fluid from different sized follicles and their relationship to serum concentrations in dairy cows. Anim Reprod Sci. 2013;140:109-114spa
dc.relation.referencesShamay A, Homans R, Fuerman Y, Levin I, Barash H, Silanikove N, et al. Expression of Albumin in Nonhepatic Tissues and its Synthesis by the Bovine Mammary Gland. J Dairy Sci. 2005;88(2):569-576spa
dc.relation.referencesSchweigert FJ, Gericke B, Wolfram W, Kaisers U, Dudenhausen JW. Peptide and protein profiles in serum and follicular fluid of women undergoing IVF. Human Reproduction. 2006;21(11):2960-2968spa
dc.relation.referencesSirard MA, Richard F, et al. Controlling meiotic resumption in bovine oocytes: a review. Theriogenology. 1998;49:483-497spa
dc.relation.referencesSolís CA, Guerra R, Sandoya G, De Armas R. Efecto de sincronización de la onda folicular y de la frecuencia de aspiración de folículos en novillas de la raza Brahman. REDVET Rev Electrón Vet. 2012;13(10):1-16spa
dc.relation.referencesSousa PA, Silva SJM, et al. Neurotrophin signaling in oocyte survival and developmental competence: A paradigm for cellular toti-potency. Cloning Stem Cells. 2004;6:375-385spa
dc.relation.referencesStojkovic M, Machado SA, et al. Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol Reprod. 2001;64:904-909spa
dc.relation.referencesSunderland SJ, Knight PG, et al. Alterations in Intrafollicular Levels of Different Molecular-Mass Forms of Inhibin During Development of Follicular-Phase and Luteal-Phase Dominant Follicles in Heifers Biol of Reprod 1996;54:453-462spa
dc.relation.referencesTabatabaei S, Mamoei M, Aghaei A. Dynamics of ovarian follicularfluid in cattle. Comp Clin Pathol. 2011;20:591-595spa
dc.relation.referencesTao J, Zhao G, Zhao X, Li F, Wu X, Hu J, Zhang Y. Proteomic analysis of the follicular fluid of Tianzhu white yak during diestrus. Int J Mol Sci. 2014;15(3):4481-4491spa
dc.relation.referencesUlbrich S, Frohlich T, Schulke K, Englberger E, Waldschmitt N, Arnold G, et al. Evidence for Estrogen-Dependent Uterine Serpin (SERPINA14) Expression During Estrus in the Bovine Endometrial Glandular Epithelium and Lumen. Biol Reprod. 2009;81(4):795-805spa
dc.relation.referencesValck SDM, De Bie J, Michiels ED, Goovaerts IG, Punjabi U, Ramos-Ibeas P, Leroy JL. The effect of human follicular fluid on bovine oocyte developmental competence and embryo quality. Reproductive Bio Medicine Online. 2015;30(2): 203-207spa
dc.relation.referencesVilla N, Pulgarín E, Tabares P, Angarita E, Ceballos A. Medidas corporales y concentración sérica y folicular de lípidos y glucosa en vacas Brahman fértiles y subfértiles. Pesqui Agropecu Bras. 2009;44(9):1198-1204spa
dc.relation.referencesWaki H, Yamauchi T, Kamon J, Ito Y, Uchida S, Kita S, et al. Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. J Biol Chem. 2003;278(41):40352-40363spa
dc.relation.referencesWang W, Day B N, et al., How does polyspermy happen in mammalian oocytes Microsc Res Tech. 2003;61:335-341spa
dc.relation.referencesYoo S, Bolbot T, Koulova A, Sneeringer R, Humm K, Dagon Y, et al. Complement factors are secreted in human follicular fluid by granulosa cells and are possible oocyte maturation factors. J Obstet Gynaecol Res. 2013;39(2):522-527spa
dc.relation.referencesZachut M, Sood P, Levin Y, Moallem U. Proteomic analysis of preovulatory follicular fluid reveals differentially abundant proteins in less fertile dairy cows. J Proteomics. 2016;139:122-129spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.identifier.eissn2011-2629
dc.identifier.urlhttps://doi.org/10.22579/20112629.598
dc.relation.bitstreamhttps://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/598/pdf
dc.relation.citationeditionNúm. 1 , Año 2020spa
dc.relation.citationendpage41
dc.relation.citationissue1spa
dc.relation.citationstartpage32
dc.relation.citationvolume24spa
dc.relation.ispartofjournalOrinoquiaspa
dc.title.translatedFollicular fluid (FF) protein expression associated with oocyte quality in Zebu cattleeng
dc.type.contentTextspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

FicherosTamañoFormatoVer
Orinoquia-598.pdf865.4Kbapplication/pdfVer/

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Orinoquia - 2020
Excepto si se señala otra cosa, la licencia del ítem se describe como Orinoquia - 2020