HALLAZGOS PRELIMINARES DE PERFIL HEMATICO Y METABOLICO DE CHIGUIROS (Hydrochaeris hydrochaeris Linnaeus 1766) EN VIDA SILVESTRE MEDIANTE CAPTURA FISICA Y RESTRICCION QUIMICA DURANTE LA EPOCA DE INVIERNO EN EL MUNICIPIO DE PAZ DE ARIPORO (CASANARE)

> CARLOS ANDRES RODRIGUEZ ROJAS JORGE EDUARDO ROMERO FONSECA

Informe final de estudiante participante de Investigacion en el Proyecto DETERMINACION DE PARAMETROS HEMATICOS Y PERFIL METABOLICO DE CHIGUIROS (Hydrochaeris hydrochaeris) EN SU HABITAD NATURAL

DIRECTOR INVESTIGACION

EDGAR EDILBERTO FUENTES REYES

M V Z, MSc PhD

DIRECTOR METODOLOGIA
RICARDO CORREDOR MATUS
M V Z, MSc

UNIVERSIDAD DE LOS LLANOS

FACULTAD DE CIENCIAS AGROPECUARIAS Y RECURSOS NATURALES

ESCUELA DE MEDICINA VETERINARIA Y ZOOTECNIA

VILLAVICENCIO

2008

HALLAZGOS PRELIMINARES DE PERFIL HEMATICO Y METABOLICO DE CHIGUIROS (Hydrochaeris hydrochaeris Linnaeus 1766) EN VIDA SILVESTRE MEDIANTE CAPTURA FISICA Y RESTRICCION QUIMICA DURANTE LA EPOCA DE INVIERNO EN EL MUNICIPIO DE PAZ DE ARIPORO (CASANARE)

CARLOS ANDRES RODRIGUEZ ROJAS JORGE EDUARDO ROMERO FONSECA

Estudiante participante de investigación (EPI) como opción de grado para optar al titulo de Medico Veterinario Zootecnista

DIRECTOR INVESTIGACION

EDGAR EDILBERTO FUENTES REYES

M V Z, MSc PhD

DIRECTOR METODOLOGIA
RICARDO CORREDOR MATUS
M V Z, MSc

UNIVERSIDAD DE LOS LLANOS

FACULTAD DE CIENCIAS AGROPECUARIAS Y RECURSOS NATURALES

ESCUELA DE MEDICINA VETERINARIA Y ZOOTECNIA

VILLAVICENCIO

2008

EDGAR EDIZBERTO FUENTES REYES DIRECTOR INVESTIGADOR M V Z MSc PhD

AGRADECIMIENTOS

Agradecer inicialmente a las personas que incondicionalmente nos colaboraron en el muestreo de chiguiros en el municipio de Paz de Ariporo (Casanare) y a los profesores Edgar Edilberto Fuentes y Ricardo Corredor Matus por permitirnos ser participes del proyecto

Ademas agradecer a todas las personas que de una u otra manera permitieron y ayudaron a la culminación de nuestro estudio Universitano

TABLA	DE	CONT	ENIDO

		Pag
INTRO	DDUCCION	13
1	OBJETIVOS	14
1 1	OBJETIVO GENERAL	14
12	OBJETIVOS ESPECIFICOS	14
2	MARCO TEORICO	15
21	Chiguiro (Hydrochaeris hydrochaeris)	15
211	Clasificacion	15
212	Distribucion	15
213	Descripcion del Animal	16
22	Hematologia basica	18
221	Eritrocitos	18
222	Hematocrito	18
223	Hemoglobina	19
224	Volumen Corpuscular Medio	19
225	Hemoglobina Corpuscular Media	19
226	Concentracion de Hemoglobina corpuscular Media	19
227	Leucocitos	20
228	Plaquetas	21
23	Determinacion de bioquimica clinica	21
231	Funciones principales de algunas moleculas biologicas	22

2311	Glucosa	22
2312	Colesterol	23
2313	Trigliceridos	24
2314	Acido urico	24
2315	Creatinina	24
2316	Proteinas totales	25
2317	Albumina	26
2318	Bilirrubina	26
2319	Perfiles enzimaticos	27
23191	Alanına amınotransferasa (ALT)	27
23192	Aspartato aminotransferasa (AST)	28
23193	Gama Glutamıl Transferasa (GGT)	28
23110	Perfil mineral	29
231101	Calcio	29
231102	Fosforo	29
231103	Hierro	30
231104	Cloro	30
231105	Magnesio	31
231106	Sodio	32

3	METODOLOGIA	33
3 1	Localizacion	33
32	Diseño experimental	34
33	El proyecto a nivel de campo y otra a nivel de laboratorio	35
331	Trabajo de campo	35
331	1 Reconocimiento del habitad del chiguiro	35
331	2 Captura de especimenes en estado silvestre	35
3 3 1 3	3 Toma de muestras	36
331	4 Procesamiento y conservacion de muestras	36
332	Trabajo de laboratorio	36
3 4	Analisis estadistico	37
4	RESULTADOS	38
4 1	Hematologia basica	38
411	Globulos rojos	38
412	Hematocrito	39
413	Hemoglobina	40
414	Indices eritrocitarios	41
414	1 Volumen corpuscular medio	41
414	Hemoglobina corpuscular media	42
414	3 Hemoglobina corpuscular media	43
415	Globulos blancos	44
415	1 Neutrofilos	45

4152	Linfocitos		46
4153	Eosinofilos		47
4154	Monocitos		48
416 Pla	quetas		49
42 Qu	ımıca sanguınea		50
421 Glu	cosa		50
422 Col	esterol		51
423 Trig	gliceridos		52
424 Acı	do urico		53
425 Niti	ogeno ureico en sangr	re	54
426 Cre	eatinina		55
427 Pro	teinas plasmaticas tota	ales	56
4271	Albumina		57
4272	Globulina		58
428 Bili	rrubina total		59
4281	Bilirrubina directa		60
4282	Bilirrubina indirecta		61
43 Per	files enzimaticos		62
431 Ala	nina aminotransferasa		62
432 Asp	partato aminotransferas	sa	63
433 Ga	ma glutamıl transferasa	a	64

434	Fosfatasa alcalina	65
435	Creatinin kinasa	66
4 4	Perfiles minerales	67
441	Magnesio	67
442	Calcio	68
443	Fosforo	69
444	Potasio	70
445	Sodio	71
446	Cloro	72
447	Hierro	73
5	ANALISIS DE RESULTADOS	74
6	CONCLUSIONES	84
7	REVISION BIBLIOGRAFICA	86
	Anexos	92

INDICE DE FIGURAS

- Figura 1 Distribucion actual del capibara
- Figura 2 Area natural objeto de estudio
- Figura 3 Recuento de Globulos Rojos (M/mm³) en la poblacion total de chiguiros (*Hydrochaeris hydrochaeris*) en estado natural durante la epoca de invierno
- Figura 4 Hematocrito (%) en la poblacion total de chiguiros (*Hydrochaeris*) en estado natural durante la epoca de invierno
- Figura 5 Hemoglobina (g/dl) en la poblacion total de chiguiros (*Hydrochaeris hydrochaeris*) en estado natural durante la epoca de invierno
- Figura 6 VCM en la poblacion total de chiguiros (*Hydrochaeris hydrochaeris*) en estado natural durante la epoca de invierno
- Figura 7 HCM (pg) en la poblacion total de chiguiros (*Hydrochaeris hydrochaeris*) en estado natural durante la epoca de invierno
- Figura 8 CHCM en la poblacion total de chiguiros (*Hydrochaens hydrochaens*) en estado natural durante la epoca de invierno
- Figura 9 Recuento de globulos blancos en la población total de chiguiros (*Hydrochaeris hydrochaeris*) en estado natural durante la epoca de invierno
- Figura 10 Recuento de neutrofilos en la poblacion total de chiguiros (*Hydrochaeris hydrochaeris*) en estado natural durante la epoca de invierno
- Figura 11 Recuento de linfocitos en la población total de chiguiros (*Hydrochaens*) en estado natural durante la epoca de invierno
- Figura 12 Recuento de eosinofilos en la poblacion total de chiguiros (*Hydrochaeris hydrochaeris*) en estado natural durante la epoca de invierno

- Figura 13 Recuento de monocitos en la poblacion total de chiguiros (*Hydrochaens*) en estado natural durante la epoca de invierno
- Figura 14 Recuento de Plaquetas en la poblacion total en la poblacion natural de chiguiros (*Hydrochaens hydrochaens*) durante la epoca de invierno
- Figura 15 Glucosa (mg/dl) de la poblacion total de chiguiros (*Hydrochaens* hydrochaens) en estado natural en la epoca de invierno
- Figura 16 Colesterol (mg/dl) de la poblacion total de chiguiros (*Hydrochaens* hydrochaens) en estado natural en la epoca de invierno
- Figura 17 Trigliceridos (mg/dl) de la población total de chiguiros (*Hydrochaeris*) hydrochaeris) en estado natural en la epoca de invierno
- Figura 18 Acido urico (mg/dl) de la poblacion total de chiguiros (*Hydrochaens* hydrochaens) en estado natural en la epoca de invierno
- Figura 19 BUN (mg/dl) de la poblacion total de chiguiros (*Hydrochaens* hydrochaens) en estado natural en la epoca de invierno
- Figura 20 Creatinina (mg/dl) de la poblacion total de chiguiros (*Hydrochaens* hydrochaens) en estado natural en la epoca de invierno
- Figura 21 PPT (g/dl) de la poblacion total de chiguiros (*Hydrochaens hydrochaens*) en estado natural en la epoca de invierno
- Figura 22 Albumina (g/dl) de la población total de chiguiros (*Hydrochaens* hydrochaens) en estado natural en la epoca de invierno
- Figura 23 Globulina (g/dl) de la poblacion total de chiguiros (*Hydrochaeris hydrochaeris*) en estado natural en la epoca de invierno
- Figura 24 Bilirrubina total mg/dl en la poblacion total de chiguiros (*Hydrochaeris*) hydrochaeris) en estado natural en la epoca de invierno

- Figura 25 Bilirrubina directa mg/dl en la poblacion total de chiguiros (*Hydrochaeris*) hydrochaeris) en estado natural en la epoca de invierno
- Figura 26 Bilirrubina indirecta mg/dl en la poblacion total de chiguiros (*Hydrochaeris hydrochaeris*) en estado natural en la epoca de invierno
- Figura 27 Alanina aminotransferasa (UI/L) en la poblacion total de chiguiros (Hydrochaeris hydrochaeris) en estado natural en la epoca de invierno
- Figura 28 Aspartato aminotransferasa (UI/L) en la poblacion total de chiguiros (*Hydrochaeris hydrochaeris*) en estado natural en la epoca de invierno
- Figura 29 Gama glutamil transferasa (UI/L) en la poblacion total de chiguiros (Hydrochaeris hydrochaeris) en estado natural en la epoca de invierno
- Figura 30 Fosfatasa alcalina (UI/L) en la poblacion total de chiguiros (Hydrochaeris hydrochaeris) en estado natural en la epoca de invierno
- Figura 31 Creatinin Kinasa (UI/L) en la poblacion total de chiguiros (*Hydrochaeris*) hydrochaeris) en estado natural en la epoca de invierno
- Figura 32 Magnesio (mg/dl) en la poblacion total de chiguiros (*Hydrochaeris* hydrochaeris) en estado natural en la epoca de invierno
- Figura 33 Calcio (mg/dl) en la poblacion total de chiguiros (*Hydrochaens* hydrochaens) en estado natural en la epoca de invierno
- Figura 34 Fosforo (mg/dl) en la poblacion total de chiguiros (*Hydrochaens* hydrochaens) en estado natural en la epoca de invierno
- Figura 35 Potasio (mmol/L) en la poblacion total de chiguiros (*Hydrochaeris* hydrochaeris) en estado natural en la epoca de invierno
- Figura 36 Sodio (mmol/L) en la poblacion total de chiguiros (*Hydrochaens* hydrochaens) en estado natural en la epoca de invierno

Figura 37 Cloro (mmol/L) en la población total de chiguiros (*Hydrochaens*) en estado natural en la época de invierno

Figura 38 Hierro (mg/di) en la población total de chiguiros (*Hydrochaens*) en estado natural en la época de invierno

INDICE DE TABLAS

Tabla 1 Medidas corporales, peso y temperatura (°C) de las hembras muestreadas en invierno

Tabla 2 Medidas corporales, peso y temperatura (°C) de los machos muestreados

INTRODUCCION

El chiguiro (Hydrochaeris hydrochaeris) ha sido considerado una de las especies silvestres promisorias para trabajo zootecnico, hecho que permite enfocar esfuerzos para estudiar su morfo fisiologia. La nutricion y la alimentacion animal son uno de los aspectos importantes en todo sistema de produccion animal y en particular el que se pretende en chiquiros. Uno de los limitantes para su desarrollo. es el poder establecer una estrategia alimenticia adecuada para la especie explotada Para el chiguiro, como especie silvestre con potencial zootecnico existe poco conocimiento acerca del status nutricional, es decir de los requerimientos y bases metabolicas que permitan inferir en el estudio de balances nutricionales y comportamientos de parametros productivos de crecimiento, reproduccion, sanidad y desarrollo que la especie demanda en los diversos momentos de su estado fisiologico. Para acercanos a tener una idea de cuales son estos requerimientos es necesario conocer su perfil metabolico y hematico en condiciones de su habitat natural. Este hecho nos permitira establecer estrategias nutricionales para los diversos momentos fisiológicos de la especie y asi poder tener un sistema de producción tecnicamente explotado. El conocimiento de lo anteriormente expuesto, nos permitira tener un referente sobre los valores de los parametros sanguineos, los cuales serviran de apoyo al conocimiento de su fisiologia y nutricion

1 OBJETIVOS

11 OBJETIVO GENERAL

 Contribuir al proceso investigativo de determinación de parametros hematicos y metabolicos en chiguiros (Hydrochaeris hydrochaeris) en estado silvestre mediante captura fisica y restricción química en el municipio de Paz de Ariporo (Casanare)

1 2 OBJETIVOS ESPECIFICOS

- Determinar parametros de hematologia basica en chiguiros (Hydrochaeris
 hydrochaeris) en su habitat natural durante la epoca de invierno
- Hallar parametros de quimica sanguinea tales como glucosa creatinina, nitrogeno no proteico, colesterol, trigliceridos, proteinas plasmaticas, albumina, acido urico, y bilirrubina total en chiguiros silvestres durante la epoca de invierno
- Determinar el metabolismo mineral en chiguiros (Hydrochaeris hydrochaeris) silvestres, a traves del analisis plasma/suero de calcio, fosforo, hierro, magnesio, sodio cloro y potasio durante la epoca de invierno
- Evaluar el contenido de trasaminasas sanguineas (AST y ALT), transferasas (GGT), fosfatasa alcalina y creatinina kinasa en chiguiros (Hydrochaeris hydrochaeris) silvestres durante la epoca de invierno
- Analizar y comparar los datos obtenidos en la epoca de invierno con otros estudios realizados

2 MARCO TEORICO

2.1 Chiguiro (Hydrochaeris hydrochaeris)

2 1 1 Clasificación

El capibara (*Hydrochaens hydrochaens*) es el roedor mas grande del mundo, y pertenece al suborden Caviomorphae, a la familia Hydrochoridae y a la subfamilia Cavioidae (Mones y Ojasti, 1986)

2 1 2 Distribucion

La distribución actual del capibara esta indicada en la figura 1 La subespecie H isthmius esta presente en Colombia en la zona noroeste. Hay todavia unos pocos capibaras de la misma subespecie en el departamento del Valle y en el litoral pacifico (Mendoza 1991). En Venezuela se encuentra en el noroeste y en los margenes del lago de Maracaibo, y en Panama esta presente en el Tapon de Darien, llegando hasta el canal (Gonzalez-Jimenez, 1995).

El *H hydrochaeris* se encuentra en el este de Colombia, en los Llanos Orientales, en los llanos de Venezuela, en Surinam, en Guyana y en Guyana Francesa Lo mismo que en las regiones amazonicas de Ecuador Peru, Bolivia y Brasil Tambien se encuentra en Paraguay, en Uruguay y en la parte norte de Argentina Por lo tanto, geograficamente corresponde a las cuencas hidrograficas de los principales rios sudamericanos, Orinoco, Amazonas, Parana y Rio de la Plata (Gonzalez-Jimenez 1995)

No hay referencias de su existencia por encima de los 1,300 msnm (Ojasti, 1973) y por tanto no esta presente al otro lado de los Andes

Figura 1

Fuente Gonzalez Jimenez (1995)

2 1 3 Descripcion del Animal

El capibara tiene por lo comun de 1 a 1 5 m de longitud, 0 5 a 0 65 m de altura a la cruz y 50 kg o mas de peso adulto Donaldson (1975) obtuvo un peso de 75 8 kg en los EE UU

Su peso y talla se incrementan con la latitud hacia el sur En los llanos (Venezuela y Colombia) tiene un peso entre 45 y 50 kg, mientras que en Argentina y al sur de Brasil sobrepasa los 80 kg

El cuerpo del capibara es ancho y macizo con cuello corto y cabeza prolongada alta y ancha El hocico es obtuso, con labios superiores hendidos. Las orejas son pequeñas sin pelos y muy movibles. Los ojos y orificios nasales estan situados en

la parte superior de la cabeza como adaptación a la vida acuatica. Sus extremidades son cortas en relación al volumen corporal, siendo las traseras mas largas (20 a 25 cm) que favorecen un rapido arranque. Las patas anteriores tienen cuatro dedos y las posteriores tres. Todos los dedos estan unidos entre si por pequeñas membranas natatorias y estan dotados de uñas fuertes y gruesas (Gonzalez-Jimenez, 1995)

Carece de cola y tiene en su lugar un repliegue que oculta el ano y las partes genitales. Todos los animales presentan una glandula sebacea en la parte superior de la cabeza, con apariencia de una protuberancia oscura o verruga grande. Este morrillo es visible desde al primer año de edad en los machos y se continua desarrollandose en los machos adultos hasta alcanzar un tamaño de entre 8 y 10 cm. Consiste en numerosas celulas secretoras de un liquido blanco y pegajoso que les sirve para marcar el territorio del grupo familiar (Gonzalez-Jimenez, 1995).

La madurez sexual del macho se obtiene entre 15–24 meses de edad, al peso de 30–40 kg (Ojasti, 1973)

La funcionalidad ovarica, vista como ciclo ovarico y sus relaciones endocrinas fue estudiado por Lopez (1985), quien estima que entre 10 y 12 meses de edad se logra la pubertad fisiologica cuando el peso corporal de la hembra oscila entre 15 y 20 Kg

El capibara al ser roedor posee tambien una elevada fecundidad y fertilidad que lo hacen el mas prolifico de los herbivoros

Lopez (1985) realizo un estudio para asegurarnos la longitud exacta de la gestacion Este utilizo 15 hembras adultas con mas de diez semanas de postparto, observo efectivamente la copula y despues constato espermatozoides en la vagina de cada animal Bajo estas condiciones la duración de la gestación fue de 150 6 \pm 2 8 dias

2.2 Hematologia basica

221 Eritrocitos

Los globulos rojos en la mayoria de los mamiferos son discos biconcavos enucleados denominados discolitos. La forma biconcava redunda en la palidez central de los eritrocitos observados en los extendidos sanguineos coloreados (Meyer y Harvey 2000)

El diametro de los eritrocitos en los mamiferos domesticos varia entre 4 micras en la cabra y 7 micras para el perro (Garcia 1995)

Los valores reportados por algunos autores en chiguiros (*Hydrochaeris hydrochaeris*) son Neira (2007) 4130 7x 10³/µl, Madella (2006) 4 5±0 2 M/mm³ y Arouca (2000) 3,62-3,71 M/mm³ para machos y hembras respectivamente

222 Hematocrito

El Hto determinado mediante centrifugacion de la sangre en un tubo de microhematocrito puede ser 1 a 3 % puntos mas alto que el valor calculado electronicamente debido al plasma atrapado. La excitacion ejercicio inmediatamente antes del muestreo puede causar aumentos del 30, 40 y 50% en el hematocrito de los felinos, caninos y equinos respectivamente. Reciprocamente, la anestesia (de manera especial con los barbituricos) puede causar agrandamiento esplenico con el Hto que declina por debajo del rango de referencia (Meyer y Harvey 2000)

Los rangos reportados para chiguiros (*Hydrochaens hydrochaens*) son Neira (2007), 40,2±0,5 % Madella (2006), 43 % Wendt (2006) y 42,4 % 48-49 % para machos y hembras respectivamente Arouca (2000)

2 2 Hematologia basica

2 2 1 Eritrocitos

Los globulos rojos en la mayoria de los mamiferos son discos biconcavos enucleados denominados discolitos. La forma biconcava redunda en la palidez central de los eritrocitos observados en los extendidos sanguineos coloreados (Meyer y Harvey 2000)

El diametro de los eritrocitos en los mamiferos domesticos varia entre 4 micras en la cabra y 7 micras para el perro (Garcia 1995)

Los valores reportados por algunos autores en chiguiros (*Hydrochaens* nyamonacus) son meira (2007) 4130 7x 10³/ul Madella (2006) 4,5±0,2 M/mm³ y Arouca (2000) 3,62-3 71 M/mm³ para machos y nembras respectivamente

222 Heraucu

El Hto determinado mediante centrifugación de la sangre en un tubo de micronematocrito puede ser i a 3 % puntos mas alto que el valor calculado electronicamente debido al plasma atrabado. La excitación elercicio immediatamente antes del muestreo puede causar aumentos del 30, 40 v 50% en el hematocrito de les felinos, canines y equinos respectivamente. Reciprocamente a ancetes e tras menera especia con los harbitaticos quinde de ser agrandamiento esplenico con el Hto que declina por debalo del rango de referencia (Mever y Harvey 2000).

Los rangos reportados para chiguiros (*Hydrochaens hydrochaens*) son Neira (2007); 40,2±0,5 % Madella (2006) 43 % Wendt (2006) v 42 4 % 48-49 % para machos y hembras respectivamente Arouca (2000)

223 Hemoglobina

Es una hemoproteina que esta constituida por una parte proteica, la globina, y un nucleo prostetico coloreado, el grupo hemo. Es la encargada de llevar oxigeno desde los pulmones esta los tejidos (Garcia 1995)

Los valores reportados por algunos autores en chiguiros (*Hydrochaeris hydrochaeris*) son Arouca (2000) 15-15,4 g/dl para machos y hembras respectivamente Madella (2006) 13,5±2 g/dl y Neira (2007) 14,0 g/dl

2 2 4 Volumen Corpuscular Medio

El VCM representa el volumen promedio de un eritrocito solitario expresado en fentolitros. Este varia en gran medida dependiendo la especie. Los mamiferos tienen globulos rojos mas pequeños que las aves reptiles o anfibios. Las especies con eritrocitos mas grandes tienen recuentos menores, generando. Hto similar en los mamiferos y aves. (Meyer y Harvey 2000)

Los valores reportados por algunos autores en chiguiros (*Hydrochaeris hydrochaeris*) son Arouca (2000) 132,5-131,9 fl para machos y hembras respectivamente Madella (2006) 90 2±1 fl y Neira (2007) 105,95 fl

2 2 5 Hemoglobina Corpuscular Media

La HCM se calcula dividiendo el valor de la Hb (en g/dl) por recuento de GR (en millones/µl) y multiplicar por 10 La HCM no aporta un valor adicionado, por que depende del VCM y CHCM (Meyer y Harvey 2000)

Los valores reportados por algunos autores en chiguiros (*Hydrochaens hydrochaens*) son Arouca (2000) 41,4-41-3 pg para machos y hembras respectivamente, Madella (2006) 30,1±0,7 pg y Neira (2007) 34,93 pg

2 2 6 Concentración de Hemoglobina corpuscular Media

La CHCM representa la concentracion de Hb promedio dentro de los globulos rojos. Los rangos de referencia establecidos utilizando los valores de Hto determinados por contadores celulares electronicos tienden a ser mas elevados que los calculados empleando el Hto medido mediante centrifugacion, debido a la presencia de de cantidades reducidas de plasma atrapado en los especimenes centrifugados (Meyer y Harvey 2000)

Los valores reportados por algunos autores en chiguiros (*Hydrochaens hydrochaens*) son Arouca (2000) 31,3-31,3 % para machos y hembras respectivamente Madella (2006) 33 3±1 % y Neira (2007) 0 3277 %

227 Leucocitos

En la sangre se presenta cinco tipos diferentes de leucocitos polimorfonucleares neutrofilos polimorfonucleares eosinofilos, polimorfonucleares basofilos, monolitos y linfocitos. Los tres tipos de polimorfonucleares presentan granulaciones en su citoplasma, por lo que se le denomina granulicitos. A linfocitos y monolitos tambien se le conoce como agranulocitos, ya que no presenta granulaciones en su citoplasma (Garcia1995)

Los valores reportados por algunos autores de leucocitos en chiguiros (*Hydrochaens hydrochaens*) son Madella (2006) 5,3±2x10³/µl y Neira (2007) 8699 3 mm³

Los valores reportados por algunos autores de neutrofilos en chiguiros (*Hydrochaens hydrochaens*) son Arouca (2000) 48,6-43,1 % para machos y hembras respectivamente, Madella (2006) 36,6±19,9 % y Neira (2007) 58,50 %

Los valores reportados por algunos autores de linfocito en chiguiros (*Hydrochaeris* hydrochaeris) son Arouca (2000) 42 8-49,5 % para machos y hembras

respectivamente, Madella (2006) 58,9±19,6 %, Wendt (2006) 51,7 % y Neira (2007) 35,40 %

Los valores reportados por algunos autores de eosinofilos en chiguiros (*Hydrochaeris hydrochaeris*) son Arouca (2000) 3,4-3 % para machos y hembras respectivamente Madella (2006)3 5±11 7 % Wendt (2006) 25% y Neira (2007) 1,19 %

Los valores reportados por algunos autores de monocitos en chiguiros (*Hydrochaens hydrochaens*) son Arouca (2000) 4,8-3,8 % para machos y hembras respectivamente, Madella (2006)1,5±2,1 %, Wendt (2006) 3,9 % y Neira (2007) 3,88%

228 Plaquetas

Las plaquetas sanguineas (trombocitos) en los mamiferos son fragmentos celulares enucleados, diminutos, redondos a ovales, que se forman a partir de de los cilindros de citoplasma de los megacariocitos El citoplasma es azul claro con muchos granulos purpura rojizos minusculos cuando se visualizan utilizando los colorantes sanguineos de rutina Tienen un lapso de vida de 5 a 10 dias en la mayoria de los animales domesticos (Meyer y Harvey 2000)

Los valores reportados por algunos autores en chiguiros (*Hydrochaeris* hydrochaeris) son (ISIS 2002) 0,2890x10¹², Neira (2007) 264,17x10³

2 3 Determinación de bioquimica clínica

Para este fin es utilizado suero o plasma. El suero es obtenido a partir de una muestra de sangre extraida sin anticoagulante, esperando el tiempo necesario para la formación del coagulo. El tiempo que dura su formación es muy variable, entre 30 a 180 minutos. Por esta razon, es mas practico enviar al laboratorio.

muestras de plasma utilizando heparina de sodio como anticoagulante (tubos tapa verde). Los anticoagulantes EDTA, oxalato y citrato no deben ser utilizados para determinaciones bioquimicas. En recipientes de plastico, el tiempo de formacion de coagulo es aproximadamente el doble al de vidrio.

De esta forma queda el coagulo, que debe ser separado de las paredes del tubo utilizando una pipeta de pasteur. Posteriormente, debe ser centrifugado a 1500 g (2500 a 3500 rpm) durante 10 minutos y transferir el suero para otro recipiente libre de coagulo. La muestra no debe ser centrifugada ni colocada en refrigeracion antes que el coagulo este bien formado, pues se prolonga el tiempo de coagulacion y existe predisposicion a la coagulacion.

Es necesario separar el suero de coagulo o el plasma de celulas sanguineas dentro de un periodo maximo de 2 horas despues de removida la muestra. Si el tiempo fue mayor las fracciones de parametros de suero medidos varian debido a cambios de elementos entre la fase celular y liquida de la sangre.

Es conveniente conservar la muestra bajo refrigeracion (0-4°C), o las muesra pueden ser congeladas (-8 a -20 °C)

La mejor forma de obtener el plasma es colectando las muestras de sangre con heparina como anticoagulante, en proporcion de 3 gotas de heparina al 1% (0 2 mg o 200 UI) para cada 100 ml de sangre Es importante mezclar varias veces de forma suave para incorporar totalmente o anticoagulante con la sangre para que este se conserve en buen estado

2 3 1 Funciones principales de algunas moleculas biologicas

2 3 1 1 Glucosa

Existen dos maneras principales de medir la glucosa en sangre, tiras reactivas (con o sin reflectometro) y métodos estándares de laboratorio (Willard et al, 2002)

Entre varios metabolitos usados como combustible para la oxidación respiratoria la glucosa en considerada la mas importante, siendo vital para funciones tales como el metabolismo del cerebro y lactancia. El nivel de glucosa sanguinea puede indicar fallas en la homeostasis como ocurre en enfermedades tales como la cetosis (Diaz y Ceroni da Silva, 2003)

En la respuesta al estres los niveles de glucosa aumentan debido a la secreción de catecolaminas y de glucocorticoides, pero también pueden disminuir como consecuencia de una actividad intensa (Sacristan, 1995)

Los rangos reportados en chiguiros (*Hydrochaens hydrochaens*) por Colvee (1976) son 57 55 mg/dl y 61 71 mg/dl para machos y hembras respectivamente

2 3 1 2 Colesterol

Se determina en suero o plasma heparinazado por metodos espectrofotometricos cromatográfico, automatizado directo y enzimatico (Willard et al. 2002)

El colesterol es precursor de la biosintesis de todas las hormonas esteroideas, la tamina D y las sales biliares (McKee y McKee, 2003). En animales puede ser tanto de origen exogeno, proveniente de alimentos, como endogeno, siendo sintetizado a partir de Acetil-CoA en el higado, las gónadas, el intestino, la glandula adrenal y la piel. La biosintesis de colesterol es inhibida con la ingestion de colesterol exogeno.

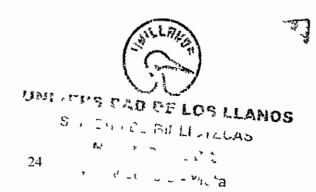
Los niveles de colesterol plasmatico son indicadores adecuados del total de lipidos en plasma, pues corresponden aproximadamente al 30% del total (Diazi y Ceroni da Silva, 2003)

Los rangos reportados en chiguiros (*Hydrochaens hydrochaens*) por Colvee (1976) son 69,73 mg/dl y 73,00 mg/dl para machos y hembras respectivamente

2 3 1 3 Trigliceridos

Los valores de triglicéridos tienden a ser levemente menores en el plasma que en el suero (Willard et al, 2002)

Los triglicéridos formados en higado son transportados en sangre bajo la forma de lipoproteinas de minima densidad (VLDL) Estos compuestos consisten principalmente de triglicéridos (en torno al 60%), conteniendo también colesterol, fosfolipidos y proteinas plasmáticas Los triglicéridos ligados a VLDL son considerados triglicéridos endógenos (Diaz y Ceroni da Silva 2003)


Valores de 152,6±1,096 mg/dl son reportados para chiguiros (*Hydrochaens*) (ISIS 2002)

2 3 1 4 Acido urico

El acido unco es producto del metabolismo de las purinas en primates y en perros de raza dalmata, representando el fin del metabolismo de compuestos nitrogenados del organismo En la mayoria de mamiferos, este metabolismo ocurre convirtiendo el acido urico en alantoina (Diaz y Ceroni da Silva, 2003)

Neira y Chaves (2007) encontraron una media para este de 1 8±1 61 mg/dl en chiguiros (*Hydrochaens hydrochaens*) en confinamiento

2 3 1 5 Creatinina

La creatinina plasmatica es derivada, practicamente en su totalidad, del catabolismo de creatina presente en tejido muscular. La creatina es un metabolito utilizado para almacenar energia en el musculo, en forma de fosfocreatina, su degradación a creatinina ocurre de forma constante, alrededor del 2% del total de creatina diariamente. La conversion de fosfocreatina en creatinina es una reacción no enzimatica e irreversible, dependiente de factores estequiometricos (Diaz. y Ceroni da Silva, 2003)

La concentración sanguinea de creatinina es proporcional a la masa muscular Por este motivo en situaciones de atrofia muscular y otras enfermedades relacionadas, ocurre disminución de la cantidad de creatinina plasmática. Al mismo tiempo, en situaciones de ejercicio prolongado o intenso puede ser observado un aumento en niveles plasmáticos de creatinina (Diaz y Ceroni da Silva, 2003)

Neira y Chaves (2007) encontraron una media para la creatinina de 1 77±0 41 mg/dl en chiguiros (*Hydrochaens hydrochaens*) en confinamiento

2 3 1 6 Proteinas totales

Las proteinas totales pueden estimarse en el liquido, suero o plasma (con EDTA o heparinazado) por medio de un refractometro que mide solidos totales (Willard et al., 2002)

Las principales proteinas plasmáticas son la albumina, las globulinas y el Fibrinogeno Ellas estan involucradas en multiples funciones a) mantenimiento de la presion osmotica y de la viscosidad de la sangre, b) transporte de nutrientes, metabolitos, hormonas y productos de excreción, c) regulación del pH sanguineo, d) participacion en coagulación sanguinea (Diaz y Ceroni da Silva, 2003)

Las proteinas sanguineas son sintetizadas principalmente por el higado, siendo que la tasa de sintesis esta directamente relacionado con el estado nutricional del

animal, especialmente con los niveles de proteina y de vitamina A y con la funcionalidad hepática (Diaz y Ceroni da Silva, 2003)

Los rangos reportados en chiguiros (*Hydrochaens hydrochaens*) por Colveé (1976) son 7,90 mg/dl y 7,85 mg/dl para machos y hembras respectivamente

2 3 1 7 Albumina

La albumina es la proteina mas abundante del plasma. Tiene un peso molecular aproximado de 66 kD. Se sintetiza en el higado y contribuye en un 80% de osmolaridad del plasma sanguineo, constituyendo también una reserva proteica bien como un transportador de ácidos grasos libres, aminoácidos, metales, Calcio, hormonas y bilirrubina. La albumina también tiene la función de regular el pH sanguineo, actuando como anion (Diaz y Ceroni da Silva, 2003)

La concentracion de albumina es afectado por el funcionamiento hepatico, disponibilidad de proteinas en la dieta, equilibrio hidroelectrolítico y por perdidas de proteinas en algunas enfermedades (Diaz y Ceroni da Silva, 2003)

Los valores bajos son normales para los peripartos y los animales jovenes. Los valores aumentan gradualmente hasta la adultez, los más altos son los valores promedio normales para la adultez. Tanto la albumina como la globulina tienden a declinar con el avance de la ancianidad (Willard et al., 2002)

Los rangos encontrados por Colveé (1976) son 2 85 mg/dl y 3,13 mg/dl para chiguiros machos y hembras respectivamente

2 3 1 8 Bilirrubina

La bilirrubina es un pigmento naranja, es el producto de un conjunto de reacciones que degradan los grupos hemo de varias hemoproteinas. Aproximadamente el 80% de los 250-400 mg/dl de bilirrubina que se forma diariamente proceden de la hemoglobina de los eritrocitos envejecidos (McKee y McKee, 2003)

La bilirrubina restante proviene de la degradación de mioglobina, de citocromos y de eritrocitos inmaduros de la medula ósea. La hemoglobina liberada de eritrocitos se divide en porción globina y grupo hemo. Después la extracción de molécula de hierro, que es almacenada o reutilizada, el grupo hemo es convertido en bilirrubina. La bilirrubina asi formada es convertida en bilirrubina no conjugada, que es trasportado hasta el higado ligado a la albumina plasmática. Esta forma tambien es conocida como bilirrubina libre o indirecta. Esta bilirrubina no es soluble en agua. Siendo liposoluble, no es filtrado por los glomérulos renales y no es excretada por la orina (Diaz. y Ceroni da Silva, 2003).

En vida silvestre Jara y Sanchez (1998) citado por Neira y Chaves (2007), se obtuvieron valores promedio en hembras y machos de bilirrubina mg/dl L (indirecta) 0,09±0 05, D (directa) 0,1±0,1, T (total) 0 2±0,2

2 3 1 9 Perfiles enzimaticos

2 3 1 9 1 Alanına amınotransferasa (ALT)

La ALT (GPT) cataliza la transaminación reversible de alanina y 2-cetoglutarato en piruvato y glutamato. También como cofactor el piridoxalfosfato. Es encontrado en gran concentracion en higado y, en menor grado, riñón y los musculos teniendo localización citoplasmática. La ALT es un buen indicador de hepatopatias agudas en perros, gatos, conejos, ratones y primates, principalmente en enfermedades hepatocelulares, necrosis hepatica, obstrucción biliar, intoxicación en infecciones parasitarias. Su uso en cerdos, caballos y rumiantes es de poco valor diagnostico debido a las bajas concentraciones de enzima en los tejidos de estas especies. En procesos cronicos su valor esta disminuido. También puede aumentar en casos severos de daño muscular (Diaz y Ceroni da Silva, 2003)

Los rangos encontrados para esta enzima en chiguiros (*Hydrochaens hydrochaens*) son 69,9 ±16,39 UI/I (Jara y Sánchez, 1998) 79,3±27,37 UI/I en animales en confinamiento (Neira y Chaves, 2007)

2 3 1 9 2 Aspartato aminotransferasa (AST)

La AST (GOT) cataliza la transaminación reversible de aspartato y 2 cetoglutarato en oxalacetato y glutamato. Tambien como cofactor en piridoxalfosfato. Existen en muchos tejidos como dos isoformas, el citosol y la mitocondria. Son mas abundantes en higado y en los musculos. Su uso es como indicador de daños en muchos tejidos (Diaz y Ceroni da Silva, 2003).

El aumento de la ALT refleja un daño de la membrana y perdida, mientras que el de la AST tiende a reflejar un daño hepático mas grave debido a que las mitocondrias no se dañen con tanta facilidad como la membrana celular El ejercicio y las inyecciones intramusculares pueden elevar la AST sérica Las causas más comunes incluyen enfermedad hepática y muscular (Willard et al , 2002)

Los parámetros encontrados para la AST son 40±23 UI/I (ISIS 2002) y 88,1±38,51 UI/I en confinamiento segun (Neira y Chaves, 2007)

2 3 1 9 3 Gama Glutamil Transferasa (GGT)

La GGT cataliza la transferencia de grupos gama carboxil de glutamato en un péptido generalmente el peptido Gly Gly Esta enzima también es conocida como gama glutamil transpeptidasa. Se encuentra como enzima asociada a membranas, pero también en el citosol, especialmente en epitelios de ductos biliares y renales, también puede ser encontrada en páncreas e intestino delgado (Diaz. y Ceroni da Silva, 2003)

Los valores medios encontrados por Neira y Chaves (2007) son de 4,2±2,18 Ul/l en confinamiento y la ISIS (2002) reporta valores de 3±2 Ul/l

2 3 1 10 Perfil mineral

2 3 1 10 1 Calcio

El calcio plasmático existe en tres formas ionizado o libre (~50%), ligado a la albumina (~45%) y ligado a los aniones (~5%) El calcio ionizado es la forma biológicamente activa. El pH de los liquidos extracelulares y la concentración de proteinas plasmáticas pueden modificar sus niveles en plasma. La acidosis promueve el incremento de la forma ionizada, mientras que la alcalosis tiene el efecto opuesto muscular (Meyer y Harvey 2000)

El nivel de calcio en plasma sanguineo, de la mayoria de las especies animales, exceptuando las gallinas ponedoras, es bastante constante, entre 8 a 12 mg/dl (Diaz y Ceroni da Silva, 2003)

La absorción de calcio en intestino disminuye con la edad Animales viejos sufren reduccion de la capacidad de movilizar reservas de calcio cuando ocurren desequilibrios, siendo, por tanto mas susceptibles de sufrir hipocalcemia (Diaz y Ceroni da Silva, 2003)

2 3 1 10 2 Fosforo

El fosforo pertenece al grupo de los macroelementos, pues el organismo de los vertebrados contiene cerca de un 1,2 % de fosforo. Se encuentra un 75-85 % en los huesos y el 15-25 % se encuentra en los tejidos blandos (Engelhardt, 2005).

El fósforo existe en combinaciones organicas dentro de las células, pero el interés principal en el perfil metabólico reside en fósforo inorgánico presente en plasma

El mantenimiento de los niveles de fosforo en sangre es gobernada por los mismos factores que promueven la asimila cion de calcio. Sin embargo, la interpretación del perfil de los minerales indica diferentes problemas (Diaz y Ceroni da Silva, 2003)

Las concentraciones plasmaticas de fosforo son 1-3 mmol/L (Engelhardt, 2005) Neira y Chaves (2007) encontraron para chiguiros (*Hydrochaens hydrochaens*) en confinamiento un valor medio de 6,0±2,49 mg/dl y 2 1±1,13 mmol/L en machos y hembras de todas las edades (ISIS, 2002)

2 3 1 10 3 Hierro

El hierro es un constituyente esencial de la porcion hemo de la hemoglobina. Esta proteina es continuamente degradada y sintetizada en funcion de la vida media de los eritrocitos de forma que el hierro es reciclado continuamente. Una proteina β-globulina, denominada transferrina transporta el hierro via sanguinea para todo el organismo. El hierro derivado de la degradación de hemoglobina es captado por el sistema monocuclear fagocitario y puede ser almacenado por el sistema reticulo-endotelial (Bazo, higado y medula ósea) bajo la forma de ferritina y hemosiderina, proteinas almacenadoras del mineral (Diaz. y Ceroni da Silva, 2003)

Es necesario mas hierro para la producción de globulos rojos que para el resto de las células corporales combinadas. Las celulas eritroides en desarrollo en general extraen el 70% a 95% del hierro circulante en plasma, y el 55-65% del hierro corporal se localiza en Hb de las células eritroide (3,4 mg de hierro/g de hemoglobina) (Meyer y Harvey, 2000)

2 3 1 10 4 Cloro

El cloro es uno de los 4 iones, junto con K⁺, Na y HCO₃ que son medidos en plasma para determinar el equilibrio acido basico. Siendo un ion principalmente extracelular, y su concentración puede cambiar en respuesta a las variaciones de otros electrolitos para mantener el equilibrio eléctrico de los fluidos corporales. En general, y su concentración están inversamente relacionadas con la de bicarbonato e indirectamente relacionadas con la de sodio. Los cambios de cloro están regulados principalmente por su excreción en riñón (Diaz y Ceroni da Silva, 2003)

El contenido mineral en el cuerpo de los mamiferos es de 0,8-1,2 g/Kg (Engelhardt, 2005) Colvee (1976) encontró valores de 226,38-220,29 para machos y hembras respectivamente ISIS (2002) estableció valores de referencia de 98±6 mMol/L para hembras y machos de todas las edades Neira y Chaves (2007) estableció un valor medio de 91,783±9,49 mmol/L para chiguiros en cautiverio

2 3 1 10 5 Magnesio

El magnesio es un catión intracelular abundante, segundo luego del potasio, que es un activador de multiples sistemas enzimaticos. La determinación de la concentración del magnesio en plasma apenas se correlaciona con el estado corporal total (Meyer y Harvey, 2000)

No existe un control homeostático riguroso de Mg⁺² y, por tanto, su concentración sanguinea refleja directamente el nivel de dieta. El control renal de Mg⁺² esta mas direccionado para prevenir la hipermagnesemia, mediante la excrecion de exceso de Mg⁺² por orina. Antes de una deficiencia de magnesio, sus niveles de orina caen (Diaz y Ceroni da Silva, 2003)

El contenido de magnesio en el cuerpo de los mamiferos es de 0,3-0,4 g/Kg (Engelhardt, 2005)

2 3 1 10 6 Sodio

El sodio está presente principalmente en el liquido extracelular y determina, en gran parte, el volumen y la osmolaridad del plasma, el nivel de sodio dentro de las células es mantenido bajo, gracias una membrana celular relativamente impermeable a la entrada de sodio y es una bomba de sodio que retorna el sodio de la célula para el liquido extracelular El riñón regula la cantidad de sodio del organismo, controlando también la de agua, manteniendo asi mismo la concentracion plasmatica de sodio dentro de los limites estrictos, a pesar de las fluctuaciones derivadas de la ingesta diaria (Diaz y Ceroni da Silva, 2003)

El contenido de sodio en el cuerpo de los mamiferos es de 1,0-1,5 g/Kg (Engelhardt, 2005) ISIS (2002) reporta valores de 137±6 mmol/L para todas las edades de hembras y machos

3 METODOLOGIA

3 1 Localizacion

El estudio se llevo a cabo en el hato la Victoria perteneciente a la vereda Caño Chiquito a 112 Km del casco urbano del municipio de Paz de Ariporo Casanare correspondiendo el hato a la asociación de criadores de Chiguiro de Paz de Ariporo (ASOCHIPA)

Descripción del area natural de estudio

El área natural objeto de estudio se encuentra a una latitud 5º 44' 59 63" norte, longitud 71° 28'35,68" oeste (figura 2), con temperatura media anual de 26 °C, una altitud de 159 m s n m con precipitación promedio de 2800 mm anuales y una humedad relativa del 81%

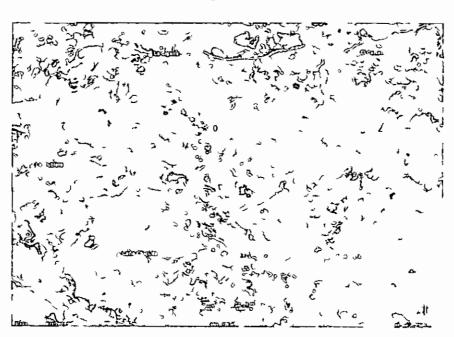


Figura 2

(Disponible en Google earth)

La topografia es plana, con suelos moderadamente ácidos, escasa concentración de elementos mayores y menores y pobre en materia organica. El extracto vegetativo está compuesto por guaratara (Axonnopus purpusi), rabo de zorro (Andropogon bicornis)

3 2 Diseño experimental

Los muestreos de animales al azar se realizaron teniendo en cuenta el sexo, peso y morfometria, descartando aquellos que presentaron signos clínicos de enfermedad, a continuación se presentan las características de 14 animales muestreados en la epoca de invierno del año 2007

Tabla 1 Medidas corporales, peso y temperatura (°C) de las hembras muestreadas en invierno

Morfometria de chiguiros(Hydrochaens hydrochaens) Hembras										
PARAMETRO	ні	H2	НЗ	H4	H5	Н6	H7	Н8	X	
Peso total	30	32	36	33	36	31	37	26	32 6	
Longitud total	92	77	84	81	75	78 8	74	89	81 4	
Alzada	46	39	51	43	46	39 9	43	52	45 0	
Perimetro toracico	93	76	74	74	79 5	75	76	73	77 6	
Perimetro										
abdominal	30	32	36	33	36	31	37	26	32 6	
Temperatura	37 6	38 1	38 3	38 8	37 2	38 9	37	37 2	37 9	

H Hembra

Tabla 2 Medidas corporales, peso y temperatura (°C) de los machos muestreados

Morfometria de chiguiros (Hydrochaens hydrochaens) Machos										
PARAMETRO	M1	M2	МЗ	M4	M5	M6	Х			
Peso total	35	47	47	53	34	45	43 5			
Longitud total	92	97	77	88	85	100	89 8			
Alzada	47	53	46	50	44	53	48 8			
Perimetro toracico	84	81	80	88	85	83	83 5			
Perimetro										
abdominal	81	84 5	86	94	84	80	84 9			
Temperatura	37 8	39 5	38 5	38	39 1	37 5	38 4			

M Macho

3 3 Esta parte del proyecto tubo una ejecución a nivel de campo y otra a nivel de laboratorio

3 3 1 TRABAJO DE CAMPO

- 3 3 1 1 Reconocimiento del habitad del chiguiro (*Hydrochaens hydrochaens*) (bosques de galeria, sabanas, esteros, ecotono, mata de monte, banquetas)
- Captura de especimenes en estado silvestre Se utilizo un método que consiste en capturar a los animales con lazo y montando un equino. Una vez capturado se inmovilizo la boca y las extremidades, para luego proceder a realizar el examen clínico (Frecuencia cardiaca, Frecuencia Respiratoria temperatura, peso, y morfometria (longitud total perimetro torácico, perimetro abdominal, alzada)) para descartar animales no aptos para ser muestreados. Hecho lo anterior se procedio a anestesiar los ejemplares, utilizando el siguiente protocolo xilazina-ketamina 0.25-05 mg/Kg P. V. y 7-10mg/Kg P. V. respectivamente (Szabuniewicz Et al. 1978)

- Toma de muestras Una vez el animal fue anestesiado se procedio a tomar muestras de sangre, previa desinfección de la vena safena la punción se realizo utilizando agujas hipodermicas calibre 21 conectadas a tubos vacutainer. Se tomaron cuatro muestras asi dos con EDTA para los análisis de hematologia básica y otras tres muestras sin anticoagulantes con gel separador para análisis de quimica sanguinea y electrolitos
- Procesamiento y conservación de muestras Las muestras con sangre entera se rotularon y la información inicial se consigno en un formato diseñado para tal fin, mientras que los tubos con gel separador se centrifugaron para la obtención del suero y el posterior mantenimiento a temperatura de refrigeración

3 3 2 Trabajo de laboratorio

Para la obtención de datos de biometria hematica se utilizo las siguientes técnicas micro-hematocrito, hemoglobina, mediante la técnica de cianometahemoglobina, recuento total de células rojas y células blancas en cámara de neubauer, recuento diferencial de células blancas y recuento de trombocitos mediante el frotis coloreado con wrigth. Además con los datos obtenidos se hallaron los indices eritrocitarios. Volumen corpuscular medio (VCM), hemoglobina corpuscular media (HCM) y concentraciones media de hemoglobina corpuscular (CHCM)-

Se determino los niveles de glucosa, creatinina, colesterol, triglicéridos, proteinas plasmáticas, albumina, acido urico, urea bilirrubina total, directa e indirecta, análisis de electrolitos (Calcio, fosforo, hierro, magnesio, sodio y cloro) y analisis de tranferasas transaminasas, fofatasa alcalina y creatina kinasa una vez centrifugada las muestras para la obtención del plasma

3 4 ANÁLISIS ESTADISTICO

La información se recolecto, almaceno en el office Microsoft Excel y se proceso en el software estadistico SPSS, versión 10. Se realizo estadistica parametrica y de tendencia central. Los datos se expresan en $x \pm D$ s. con intervalo de confianza del 95%, para este informe no se establecieron diferencias estadisticas por género.

4 RESULTADOS

A continuacion se presenta los datos tabulados del perfil hématico, metabolico, enzimático y mineral, realizado en chiguiros (*Hydrochaens hydrochaens*) silvestres durante la epoca de invierno

4 1 Hematologia básica

4 1 1 Glóbulos rojos

En el recuento de globulos rojos se halló una media de 4,03 ± 0,45 M/mm³ y 3,80± 0,34 M/mm³para machos y hembras respectivamente. En la población total de chiguiros (*Hydrochaens hydrochaens*) la media fue de 3,90±0,40 M/mm³, encontrándose la media entre 3,67-4,13 M/mm³ con un intervalo de confianza del 95%, un valor minimo de 3,26 y maximo de 4,76 y un coeficiente de varianza de 10,2 % (Figura 3)

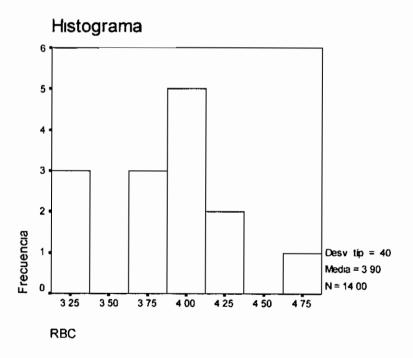


Figura 3 Recuento de Glóbulos Rojos (M/mm³) en la poblacion total de chiguiros (Hydrochaeris hydrochaeris) en estado natural durante la epoca de invierno

4 1 2 Hematocrito

La media del hematocrito es de 43,51±3,87% y 46 11±4,38% para hembras y machos respectivamente, ademas la media poblacional total corresponde a 44,62±4,16 % dentro del rango de 42,22 y 47,02 % con un intervalo de confianza del 95%, un valor minimo 36% y máximo de 51,4% con un coeficiente de variación de 9,3% (Figura 4)

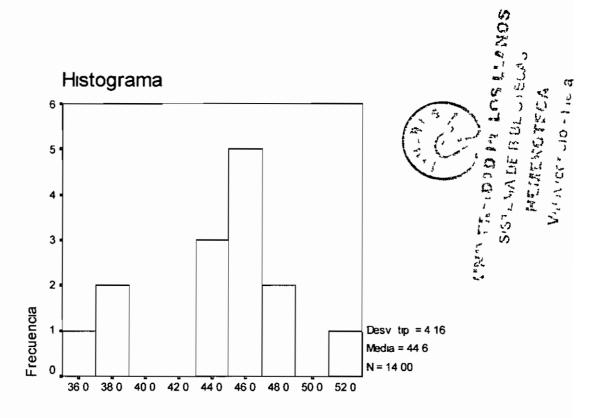


Figura 4 Hematocrito (%) en la población total de chiguiros (*Hydrochaens hydrochaens*) en estado natural durante la época de invierno

4 1 3 Hemoglobina

La media de hemoglobina del muestreo de hembras y machos es 15 05±1,42 g/dl y 15,15±1 4 g/dl respectivamente, mientras que la media poblacional total es 15,09±1,36 g/dl encontrándose dentro del rango de 14,30 g/dl y 15,87 g/dl con un intervalo de confianza del 95%, un valor minimo 12,2 g/dl y máximo de 16,9 g/dl con un coeficiente de variación de 9,02 % (Figura 5)

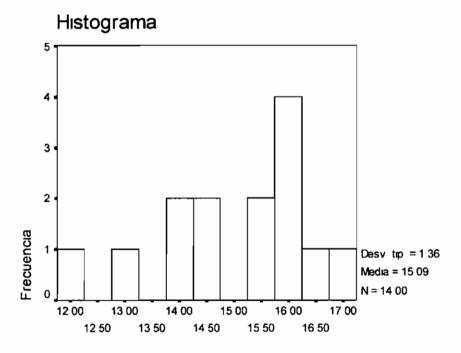


Figura 5 Hemoglobina (g/dl) en la población total de chiguiros (*Hydrochaens*) en estado natural durante la época de invierno

4 1 4 Indices eritrocitarios

4 1 4 1 Volumen corpuscular medio (VCM)

Entre los indices entrocitarios está el volumen corpuscular medio, cuya la media para hembras y machos es de 114,56±5,78 fl y 114,65±3,94 fl respectivamente, la población total de arrojo una media de 114,60±4,90 fl, con un rango entre 111,77fl y 117,43fl con un intervalo de confianza del 95%, valor minimo de 105,9 fl y maximo de 124,3 fl y un coeficiente de varianza de 4,3% (figura 6)

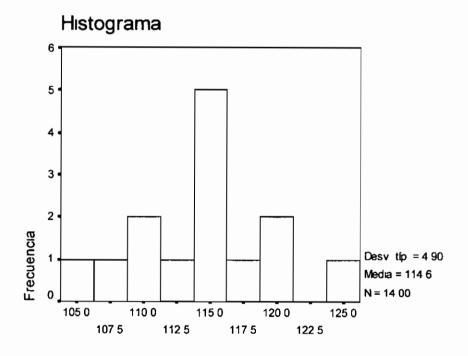


Figura 6 VCM en la población total de chiguiros (*Hydrochaens* hydrochaens) en estado natural durante la epoca de invierno

4 1 4 2 Hemoglobina corpuscular media

La media aritmetica en hembras de hemoglobina corpuscular media es 39,13± 3,35 pg y en machos de 37,7±2,13 pg, con una media poblacional total de 38 52±2,89 pg, encontrándose la media entre 36,85 y 40,19 pg con un intervalo de confianza del 95%, valor minimo de 34,7 pg y maximo de 45 pg y un coeficiente de varianza de 7,5% (figura 7)

Figura 7 HCM (pg) en la poblacion total de chiguiros (*Hydrochaens* hydrochaens) en estado natural durante la epoca de invierno

4 1 4 3 Concentración de hemoglobina corpuscular media

La media aritmetica de concentración de hemoglobina corpuscular media es 34,56±1,69 y 32,88±1,10 g/di para hembras y machos respectivamente, la media poblacional total es 33,84± 1,66 g/dl, encontrándose la media entre 32,88 y 34,80 con un intervalo de confianza del 95%, un valor minimo de 31,3 g/dl y maximo de 36,7g/dl y un coeficiente de varianza de 4,9% (figura 8)

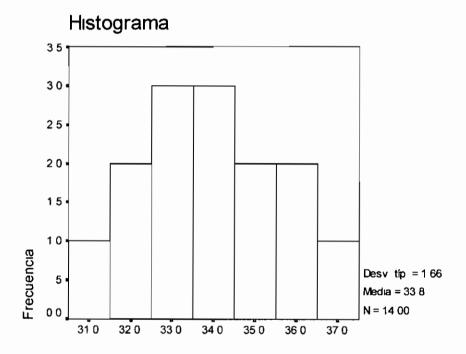


Figura 8 CHCM en la población total de chiguiros (*Hydrochaens hydrochaens*) en estado natural durante la epoca de invierno

4 1 5 Globulos blancos

El recuento de glóbulos blancos arrojo una media de 20,42±2,79 mm³ y 13,88±2 03 mm³ para hembras y machos respectivamente, con una media poblacional total de 17,69±4,13 mm³ encontrándose entre 15 07 mm³ y 20 32 mm³ con un intervalo de confianza del 95%, un valor minimo de 11 82 mm³ y máximo de 23,33 mm³ y un coeficiente de varianza de 30 % (Figura 9)

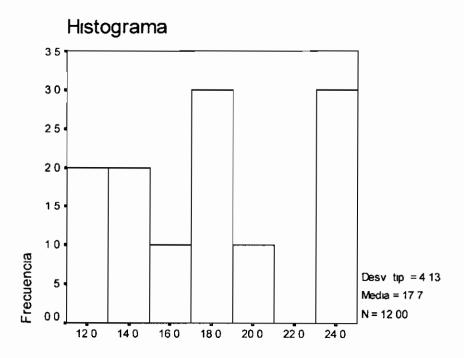


Figura 9 Recuento de globulos blancos en la poblacion total de chiguiros (*Hydrochaens hydrochaens*) en estado natural durante la época de invierno

4 1 5 1 Neutrofilos

La media de celulas polimorfonucleares neutrofilos es de 28,75±17,14% y 20,50±10,39% para hembras y machos, con una media poblacional total de 25,2±14,76% encontrándose entre 14,56% y 34,77% con un intervalo de confianza del 95%, un valor minimo de 7% y un valor máximo de 61% y un coeficiente de varianza de 63% (figura 10)

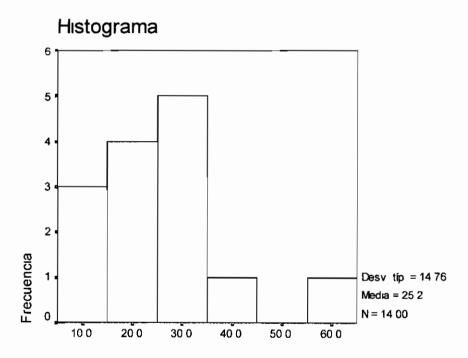


Figura 10 Recuento de neutrofilos en la poblacion total de chiguiros (*Hydrochaens hydrochaens*) en estado natural durante la epoca de invierno

4 1 5 2 Linfocitos

La media de celulas mononucleares linfocitos es 63,67±12,55% y 55,13±20,70% para machos y hembras, la media poblacional total es 58,8±17,62%, encontrandose entre 46,38 y 70,62 % con un intervalo de confianza del 95%, un valor minimo de 22% y un valor maximo de 84 % y un coeficiente de varianza de 38% (figura 11)

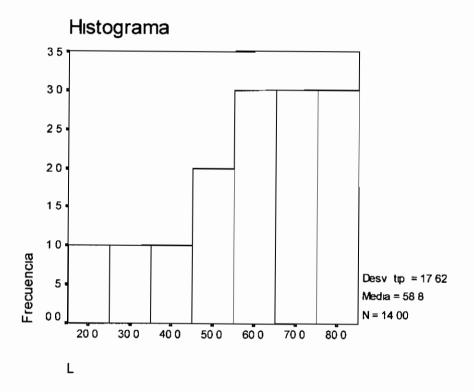


Figura 11 Recuento de linfocitos en la población total de chiguiros (*Hydrochaeris hydrochaeris*) en estado natural durante la epoca de invierno

4 1 5 3 Eosinofilos

La media de celulas polimorfonucleares eosinofilos es 13,29±3,95% y 13,60±5,03% para hembras y machos respectivamente, la media poblacional total es 13,4±4,21%, encontrándose entre 12,21% y 19,46 con un intervalo de confianza del 95%, un valor minimo de 7% y un valor máximo de 21% y un coeficiente de varianza de 42 % (figura 12)

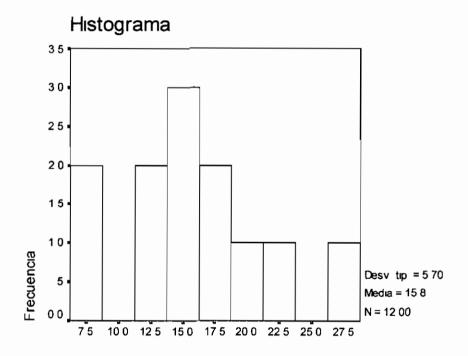


Figura 12 Recuento de eosinofilos en la población total de chiguiros (*Hydrochaens hydrochaens*) en estado natural durante la epoca de invierno

4 1 5 4 Monocitos

La media de celulas polimorfonucleares monocitos es $1,13\pm0,83\%$ y $0,83\pm1,17\%$ para hembras y machos respectivamente, la media poblacional total es $1.00\pm0.95\%$, un valor minimo de 0,0.% y un valor maximo de 3.% (figura 13)

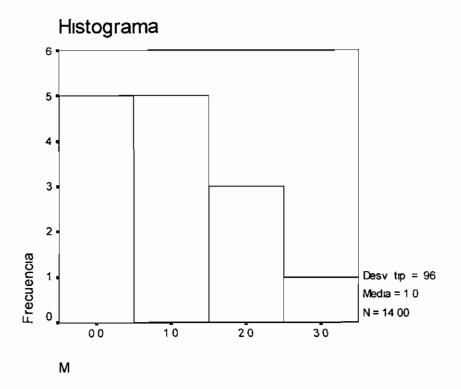


Figura 13 Recuento de monocitos en la poblacion total de chiguiros (*Hydrochaens hydrochaens*) en estado natural durante la época de invierno

4 1 6 Plaquetas

La Media del recuento de plaquetas es 249750±89253 mm³y 255 000±97 108 mm³ mm³ para hembras y machos respectivamente, además la media poblacional total corresponde a 253 166,67±87 824 dentro del rango de 197 365 94 y 308 967,39 con un intervalo de confianza del 95%, con un valor minimo 150 000 y maximo de 420 000 con un coeficiente de variacion de 35,3% (Figura 14)

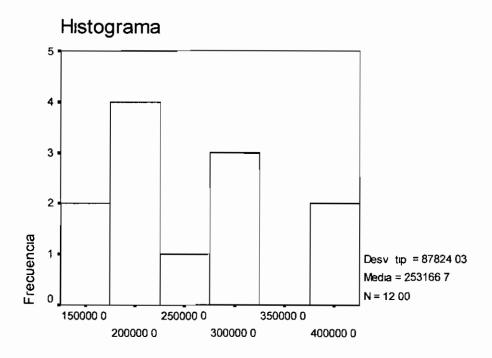


Figura 14 Recuento de Plaquetas en la poblacion total en la poblacion natural de chiguiros (*Hydrochaens hydrochaens*) durante la época de invierno

4.2 Quimica sanguinea

421 Glucosa

Para la glucosa se hallo una media 110,57±37,99 mg/dl y 94,5±36,40 mg/dl para hembras y machos respectivamente, en la poblacion total de chiguiros (*Hydrochaens hydrochaens*) la media es de 103 15±36 65 mg/dl encontrandose la media entre 81,01-125,30 mg/dl con un intervalo de confianza del 95% un valor minimo de 48 mg/dl y maximo de 179 mg/dl y un coeficiente de varianza 35,53% (figura 15)

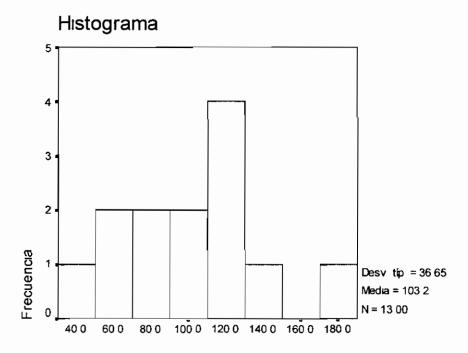


Figura 15 Glucosa (mg/dl) de la poblacion total de chiguiros (*Hydrochaens hydrochaens*) en estado natural en la epoca de invierno

422 Colesterol

El valor medio para el colesterol es de 24,86±13 06 mg/dl y 26,50±8,24 mg/dl para hembras y machos respectivamente, en la población total de chiguiros (*Hydrochaens hydrochaens*) la media es de 25,62±10 69 mg/dl encontrandose la media entre 19,16-32,07 mg/dl con un intervalo de confianza del 95%, un valor minimo de 11 mg/dl y máximo de 49 mg/dl y un coeficiente de varianza 54,01% (figura 16)

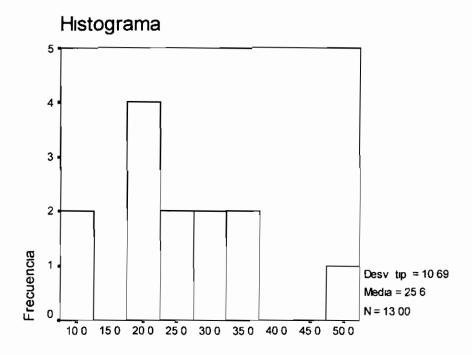


Figura 16 Colesterol (mg/dl) de la poblacion total de chiguiros (*Hydrochaens hydrochaens*) en estado natural en la época de invierno

4 2 3 Trigliceridos

Para los triglicéridos se hallo una media 23,56±12,29 mg/dl y 51,83±15,51 mg/dl para hembras y machos respectivamente, en la población total de chiguiros (*Hydrochaens hydrochaens*) la media es de 36,25±16,05 mg/dl encontrandose la media entre 25,47-47,03 mg/dl con un intervalo de confianza del 95%, un valor minimo de 14,8 mg/dl y máximo de 61 mg/dl y un coeficiente de varianza 35,53% (figura 17)

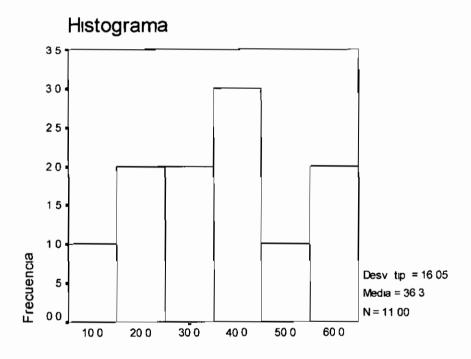


Figura 17 Trigliceridos (mg/dl) de la población total de chiguiros (*Hydrochaens hydrochaens*) en estado natural en la epoca de invierno

4 2 4 Acido urico

Para el acido urico el valor medio fue de 3,4±1,54 mg/dl y 5,81±1,52 mg/dl para hembras y machos respectivamente, con un intervalo de confianza del 95% para la media de la población total de chiguiros (*Hydrochaens hydrochaens*), que es de 4,51±1,92 mg/dl que está entre 3,35-5,68 mg/dl, un valor minimo de 1 mg/dl máximo de 7,9 mg/dl y un coeficiente de varianza 42,67% (figura 18)

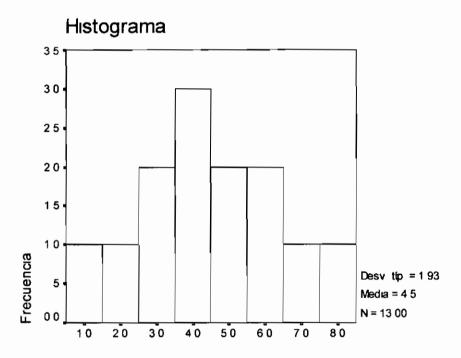


Figura 18 Acido urico (mg/dl) de la población total de chiguiros (*Hydrochaens hydrochaens*) en estado natural en la época de invierno

4 2 5 Nitrógeno ureico en sangre

Para el BUN se hallo una media 19,78±6,70 mg/dl y 22,42±4,21 mg/dl para hembras y machos respectivamente, en la población total de chiguiros (*Hydrochaens hydrochaens*) la media es de 22,13±4,05 mg/dl encontrándose la media entre 19,55-24,70 mg/dl con un intervalo de confianza del 95%, un valor minimo de 15,9 mg/dl y máximo de 30,5 mg/dl y un coeficiente de varianza 32,46% (figura 19)

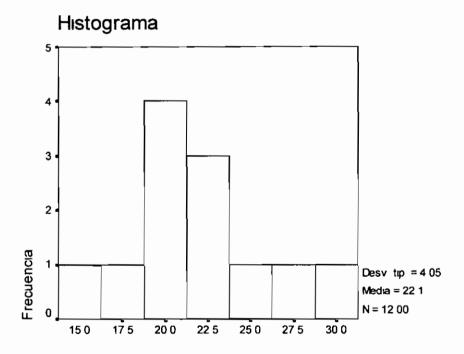


Figura 19 BUN (mg/dl) de la poblacion total de chiguiros (*Hydrochaens*) en estado natural en la epoca de invierno

426 Creatinina

El valor medio para la creatinina es de 2 30±0,29 mg/dl y 2,44±0,33 mg/dl para hembras y machos respectivamente, en la poblacion total de chiguiros (*Hydrochaens hydrochaens*) la media es de 2,36±0,30 mg/dl encontrándose la media entre 2,18-2,55 mg/dl con un intervalo de confianza del 95%, un valor minimo de 1 8 mg/dl y máximo de 2,73 mg/dl y un coeficiente de varianza 12,92% (figura 20)

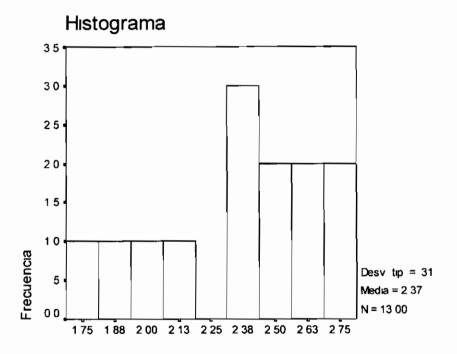


Figura 20 Creatinina (mg/dl) de la poblacion total de chiguiros (*Hydrochaens*) en estado natural en la época de invierno

4 2 7 Proteinas plasmaticas totales

Para proteinas totales el valor medio encontrado es de 6,51±0,44 g/dl y 6,08±0,47 g/dl para hembras y machos respectivamente, para la media de la población total de chiguiros (*Hydrochaens hydrochaens*) fue de 6,30±0,49 g/dl con un intervalo de confianza del 95% entre 6,01-6,60 g/dl, un valor minimo de 5,4 g/dl y máximo de 7,4 g/dl y un coeficiente de varianza 7,75% (figura 21)

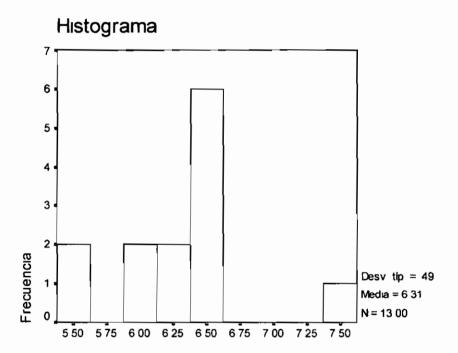


Figura 21 PPT (g/dl) de la poblacion total de chiguiros (*Hydrochaens hydrochaens*) en estado natural en la época de invierno

4271 Albumina

Los valores medios encontrados para albumina son de 3,04±0,22 g/dl y 2 82±0,26 g/dl para hembras y machos respectivamente, con un intervalo de confianza del 95% para la media de la población total de chiguiros (*Hydrochaens hydrochaens*), que es de 2,93±0,25 g/dl que esta entre 2,78-3,09 g/dl, un valor minimo de 2 5 g/dl y máximo de 3,5 g/dl y un coeficiente de varianza 8,74% (figura 22)

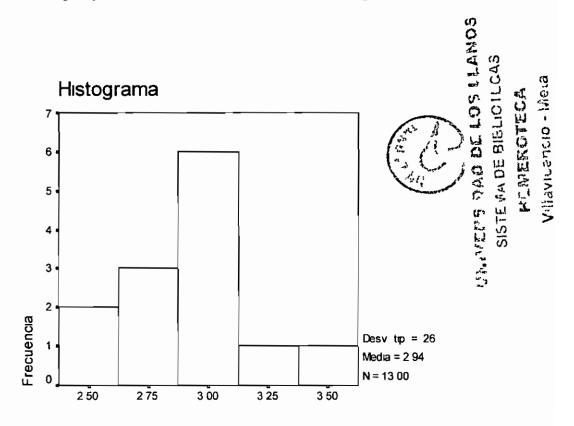


Figura 22 Albumina (g/dl) de la poblacion total de chiguiros (*Hydrochaens* hydrochaens) en estado natural en la época de invierno

4272 Globulina

Para la globulina se hallo una media 3,47±0,24 g/dl y 3 27±0,29 g/dl para hembras y machos respectivamente, en la poblacion total de chiguiros la media es de 3,38±0,27 g/dl encontrándose la media entre 3,21-3,54 g/dl con un intervalo de confianza del 95%, un valor minimo de 2,9 g/dl y máximo de 3,9 g/dl y un coeficiente de varianza 8,12% (figura 23)

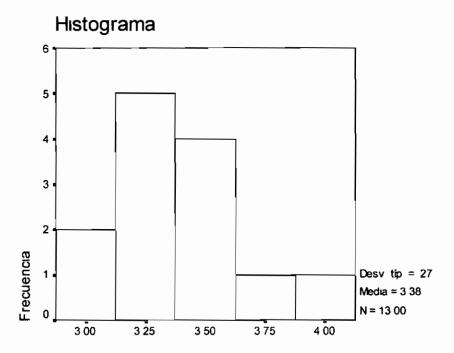


Figura 23 Globulina (g/dl) de la población total de chiguiros (*Hydrochaens hydrochaens*) en estado natural en la época de invierno

4 2 8 Bilirrubina total

La Media de Bilirrubina total es 0,39±0,07 mg/dl y 0,43±0,10 mg/dl para hembras y machos respectivamente, ademas la media poblacional total corresponde a 0,41±0,09 mg/dl dentro del rango de 0,35 y 0,46 Ul/l con un intervalo de confianza del 95%, con un valor minimo 0,29 mg/dl y maximo de 0,64 mg/dl, con un coeficiente de variación de 22,7% (Figura 24)

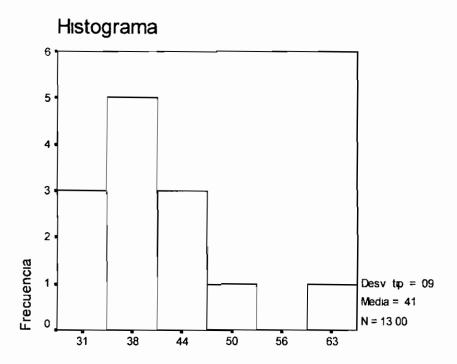


Figura 24 Bilirrubina total mg/dl en la poblacion total de chiguiros (*Hydrochaens hydrochaens*) en estado natural en la epoca de invierno

4 2 8 1 Bilirrubina directa

La Bilirrubina directa de la población de animales muestreados es 0,16±0 10 mg/dl y 0,19±0,07 mg/dl para hembras y machos respectivamente, ademas la media poblacional total corresponde a 0,18± 0,09 mg/dl dentro del rango de 0 12 y 0,23 mg/dl con un intervalo de confianza del 95% con un valor minimo 0,03 mg/dl y máximo de 0,31 mg/dl, con un coeficiente de variación de 54,2% (Figura 25)

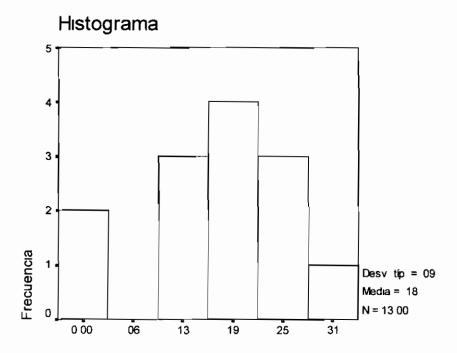


Figura 25 Bilirrubina directa mg/dl en la poblacion total de chiguiros (*Hydrochaens hydrochaens*) en estado natural en la epoca de invierno

4 2 8 2 Bilirrubina indirecta

La diferencia entre bilirrubina total y la Bilirrubina directa es 0,41±0,09 mg/dl y 0,18±0,09 mg/dl para hembras y machos respectivamente, ademas la media poblacional total corresponde a 0,23± 0,12 mg/dl dentro del rango de 0,15 y 0 20 mg/dl con un intervalo de confianza del 95%, con un valor minimo 0,08 mg/dl y maximo de 0,49 mg/dl, con un coeficiente de variación de 56,1% (Figura 26)

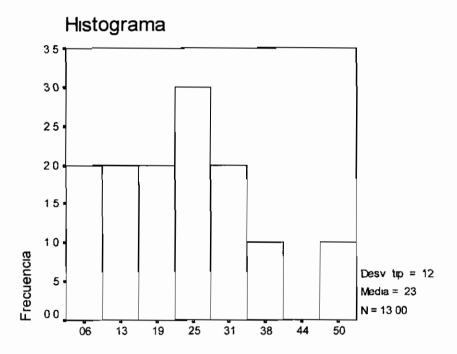


Figura 26 Bilirrubina indirecta mg/dl en la poblacion total de chiguiros (Hydrochaeris hydrochaeris) en estado natural en la época de invierno

4 3 Perfiles enzimaticos

4 3 1 Alanına amınotransferasa

El valor medio para la ALT es de 93,65±19,19 UI/L y 106,81±14,10 UI/L para hembras y machos respectivamente, en la poblacion total de chiguiros (*Hydrochaeris hydrochaeris*) la media es de 99,7±17,71 UI/L encontrandose la media entre 89,02-110,43 UI/L con un intervalo de confianza del 95%, un valor minimo de 65,5 UI/L y máximo de 133,8 UI/L y un coeficiente de varianza 17,76% (Figura 27)

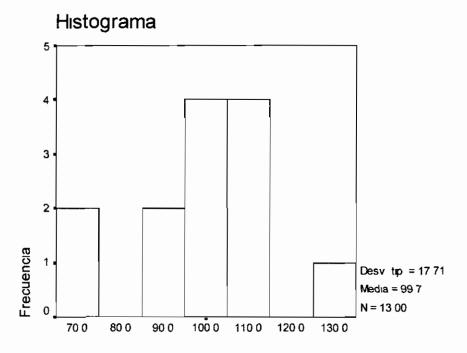


Figura 27 Alanina aminotransferasa (UI/L) en la población total de chiguiros (*Hydrochaeris hydrochaeris*) en estado natural en la epoca de invierno

4 3 2 Aspartato aminotransferasa

Para la AST se hallo una media 112,13±63,66 UI/L y 127,08±67,44 UI/L para hembras y machos respectivamente, en la población total de chiguiros (*Hydrochaens hydrochaens*) la media es de 119,61±63,01 UI/L encontrándose la media entre 79,57-159,64 UI/L con un intervalo de confianza del 95%, un valor minimo de 53,5 UI/L y maximo de 239,1 UI/L y un coeficiente de varianza 52,68% (Figura 28)

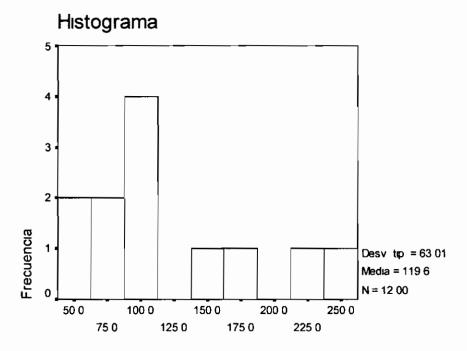


Figura 28 Aspartato aminotransferasa (UI/L) en la población total de chiguiros (*Hydrochaens hydrochaens*) en estado natural en la época de invierno

4 3 3 Gama glutamıl transferasa

Los valores medios encontrados para GGT son de 4,77±1,47 UI/L y 4 98±2,22 UI/L para hembras y machos respectivamente, con un intervalo de confianza del 95% para la media de la población total de chiguiros (*Hydrochaens hydrochaens*), que es de 4,9±1,78 UI/L que esta entre 3,7-5,1 UI/L, un valor minimo de 1 7 UI/L y máximo de 7,3 UI/L y un coeficiente de varianza 36,48% (Figura 29)

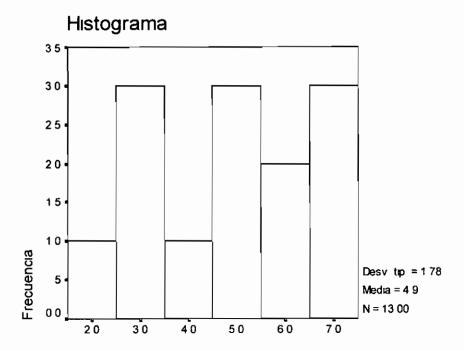


Figura 29 Gama glutamil transferasa (UI/L) en la población total de chiguiros (*Hydrochaens hydrochaens*) en estado natural en la epoca de invierno

4 3 4 Fosfatasa alcalına

La Media de fosfatasa alcalina es 415,57± 154,17 Ul/L y 358,17±83,43 Ul/L para hembras y machos respectivamente, además la media poblacional total corresponde a 389,2±124,94 Ul/L dentro del rango de 313,73 y 463,73 Ul/L con un intervalo de confianza del 95%, con un valor minimo 201 Ul/L y maximo de 606,1 Ul/L, con un coeficiente de variación de 32,2% (Figura 30)

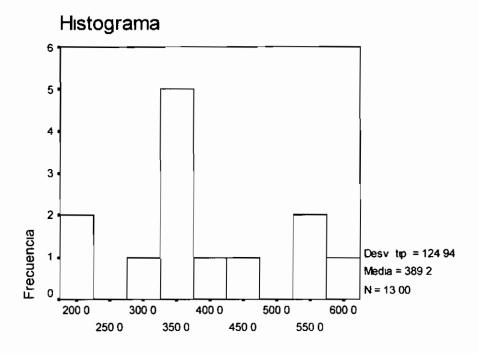


Figura 30 Fosfatasa alcalina (UI/L) en la poblacion total de chiguiros (Hydrochaens hydrochaens) en estado natural en la época de invierno

4 3 5 Creatinin kinasa

La Media de creatinin Kinasa es 289±121,49 Ul/L y 429±295,64 Ul/L para hembras y machos respectivamente, ademas la media poblacional total corresponde a 358±222,58 Ul/L dentro del rango de 171 91 y 544 06 Ul/L con un intervalo de confianza del 95% con un valor minimo 112 Ul/L y maximo de 858 Ul/L, con un coeficiente de variación de 68,2% (Figura 31)

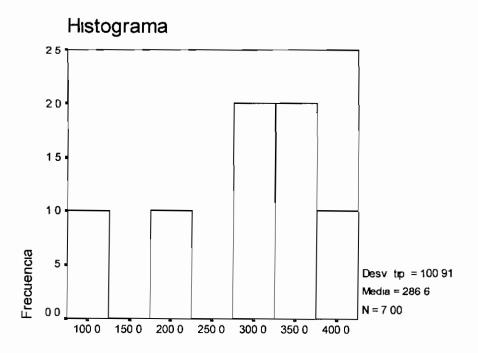


Figura 31 Creatinin Kinasa (UI/L) en la poblacion total de chiguiros (*Hydrochaens hydrochaens*) en estado natural en la epoca de invierno

4.4 Perfiles minerales

441 Magnesio

Los niveles sericos promedios de Magnesio (Mg⁺²) fueron de 2,07±0,05 mg/dl y 1,99±0,02 mg/dl para hembras y machos respectivamente, la media poblacional total corresponde a 2,032±0,05 mg/dl dentro del rango de 1,99 y 2,06 mg/dl con un intervalo de confianza del 95%, con un valor minimo 1,96 mg/dl y máximo de 2,1 mg/dl, con un coeficiente de variación de 2,6% (Figura 32)

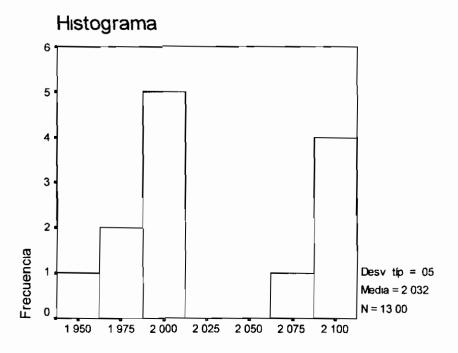


Figura 32 Magnesio (mg/dl) en la población total de chiguiros (*Hydrochaens hydrochaens*) en estado natural en la época de invierno

442 Calcio

Los niveles séricos de Calcio (Ca⁺²) son de 6,16±1,16 mg/dl y 6,07± 1,33 mg/dl para hembras y machos respectivamente la media poblacional total corresponde a 6,11± 1,19 mg/dl dentro del rango de 5,35 y 6,87 mg/dl con un intervalo de confianza del 95%, con un valor minimo 4,61 mg/dl y máximo de 8,68 mg/dl, con un coeficiente de variacion de 19,5 (Figura 33)

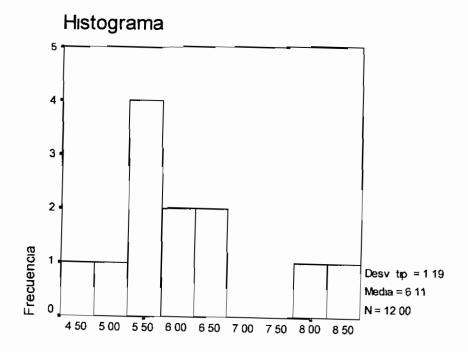


Figura 33 Calcio (mg/dl) en la poblacion total de chiguiros (*Hydrochaens* hydrochaens) en estado natural en la epoca de invierno

443 Fosforo

Los niveles sericos promedio de fósforo (P) fueron de 12,62±2,05 mg/dl y 14± 2,45 mg/dl para hembras y machos respectivamente, la media poblacional total corresponde a 13,2± 2,23 mg/dl dentro del rango de 11,78 y 14,6 mg/dl con un intervalo de confianza del 95%, con un valor minimo 9 mg/dl y maximo de 18 mg/dl, con un coeficiente de variación de 16,4 (Figura 34)

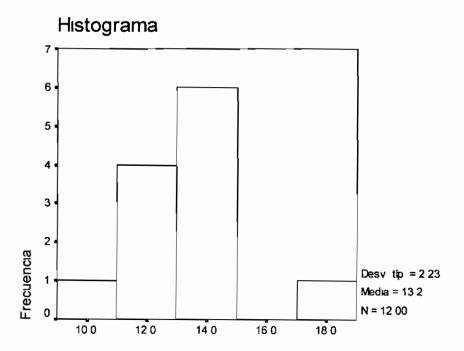


Figura 34 Fosforo (mg/dl) en la poblacion total de chiguiros (*Hydrochaens hydrochaens*) en estado natural en la epoca de invierno

444 Potasio

Los niveles sericos promedio de potasio (K⁺¹) fueron de 7,42±1,79 mmol/L y 7,85±0,79 mmol/L para hembras y machos respectivamente, la media poblacional total corresponde a 7,6±1,34 mmol/L dentro del rango de 6,78 y 8,48 mmol/L con un intervalo de confianza del 95%, con un valor minimo 5,1 mmol/L y máximo de 10,4mmol/l, con un coeficiente de variacion de 17,6 (Figura 35)

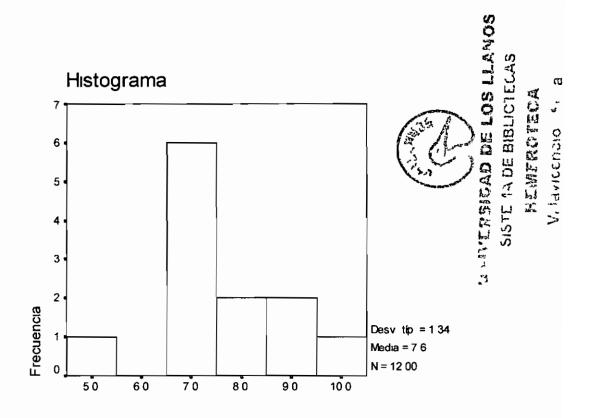


Figura 35 Potasio (mmol/L) en la poblacion total de chiguiros (*Hydrochaens*) *hydrochaens*) en estado natural en la época de invierno

445 Sodio

Los niveles séricos promedio de sodio (Na⁺¹) fueron de 146,83±15,51 mmol/L y 144,67± 24,48 mmol/L para hembras y machos respectivamente, la media poblacional total corresponde a 145,8±19,57 mmol/L dentro del rango de 133,32 y 158 18 mmol/L con un intervalo de confianza del 95%, con un valor minimo 126 mmol/L y maximo de 193 mmol/L, con un coeficiente de variación de 13,4 (Figura 36)

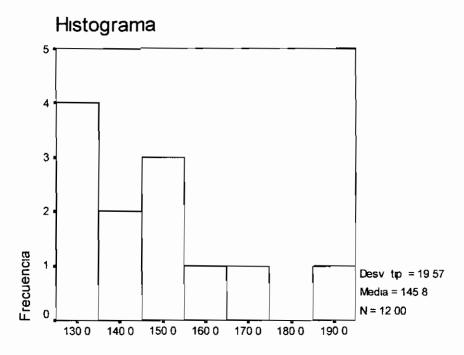


Figura 36 Sodio (mmol/L) en la población total de chiguiros (*Hydrochaens hydrochaens*) en estado natural en la epoca de invierno

446 Cloro

Los niveles sericos promedio de Cloro (Cl.) fueron de 98,17±6,68 mmol/L y 97±13 34 mmol/L para hembras y machos respectivamente, la media poblacional total corresponde a 97,6±10,08 mmol/L dentro del rango de 91 18 y 103,99 mmol/L con un intervalo de confianza del 95%, con un valor minimo 87 mmol/L y maximo de 124 mmol/L, con un coeficiente de variación de 10 3 (Figura 37)

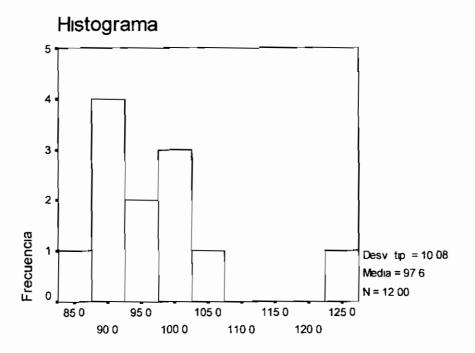


Figura 37 Cloro (mmol/L) en la población total de chiguiros (*Hydrochaens* hydrochaens) en estado natural en la epoca de invierno

447 Hierro

Los niveles séricos promedio de hierro (Fe⁺²) fueron de 200,6 \pm 94,38 µg/dl y 142,9 \pm 51,64 µg/dl para hembras y machos respectivamente, la media poblacional total corresponde a 171,8 \pm 75,01 µg/dl dentro del rango de 93,06 y 250,50 µg/dl con un intervalo de confianza del 95%, con un valor minimo 85,8 µg/dl y maximo de 309,1 µg/dl, con un coeficiente de variacion de 43,7% (Figura 38)

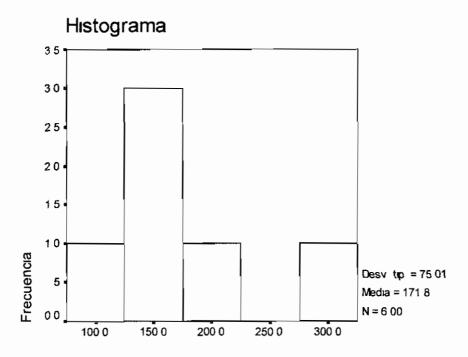


Figura 38 Hierro (mg/dl) en la población total de chiguiros (*Hydrochaens hydrochaens*) en estado natural en la epoca de invierno

5 ANALISIS DE RESULTADOS

En la población total de chiguiros (*Hydrochaens hydrochaens*), muestreado durante la época de inverno se obtuvo un recuento total de glóbulos rojos de 3,82±0,33 M/mm³, inferior a lo reportado por Neira (2007) 4,13 ±0,817 M/mm³ en animales de estado cautivo en el municipio de Villavicencio (Meta) Además menor a lo reportado por Madella (2006) 4,5±0,2 M/mm³ quien determino los valores hematologicos de capibaras (*Hydrochoerus hydrochaens*) (Rodentia Hydrochoeridae) de vida libre en la región de campiñas (Brasil), Colveé (1976) 4,67 M/mm³ citado en Gonzales 1995 y superior a lo reportado por Heijden (2003) 3,13±0,31, ISIS (2002) 3,49 m/mm³, Arouca (2000) 3,61 M/mm³ y Garavito (2000) 3,2 M/mm³ En el grupo de machos la media es 4,03 M/mm³ siendo superior al valor medio de las hembras 3 80 M/mm³

De acuerdo con el método de captura, la restriccion fisica da lugar a valores eritrocitarios mas elevados que la captura quimica (Wesson 1979, Cross 1988 Chapple 1991 citados por Montane 2002 y Neira 2007), En ambos casos, debido a la espleno-contraccion del musculo liso de la capsula esplenica que se contrae por la adrenalina y noradrenalina via efectos alfa, disminuyendo de tamaño para verter sangre al torrente circulatorio, pero se encuentra aumentado en el metodo fisico por la mayor produccion de catecolaminas (Meyer 2000 y Adams 2003) Hay que tener en cuenta el nivel de nutricion. Los animales en cautiverio tienen una alimentación más segura y balanceada que en vida libre

El hematocrito de la poblacion de chiguiros (Hydrochaeris hydrochaeris) en estado natural fue 44,62±4,16, similar a lo reportado por Neira (2007) en estado de cautiverio 42,4 %, además a Heijden (2007) 48,14 %, Madella (2006) 40 %, ISIS (2002) 41 7%, Garavito (2000) de 47%, Arouca (2000) hembras 49 % y machos 48 %, Colvée (1976) machos 43,09% y hembras 46,92%, y superior al reportado

por Wendt (2007) 31,3 % En el grupo de machos la media del hematocrito es 45,06% superior a las hembras 43,31%

La hemoglobina de la poblacion total es 15,09±1,36 g/dl, siendo similar a los datos reportados por Neira (2007) 14 g/dl, Heijden (2007) 14,86 g/dl, Madella (2006) 13,5 g/dl, ISIS (2002) 14 g/dl, Arouca (2000) en hembras 14,4g/dl y machos 15 g/dl y superior al reporte de Colvée (1976) machos 12,75 g/dl y hembras 13,13 g/d y Ligeramente inferior a Garavito (2000) 16,51 g/dl En ambos grupos la hemoglobina es similar con 14,80 g/dl y 14,88 g/dl para machos y hembras respectivamente

El volumen corpuscular medio de la poblacion total de animales muestreados fue 114,6±4,90 fl similar al reporte de Neira (2007) 105,95 fl, ISIS (2002) 123,2 fl, Arouca (2000) en hembras 131,9 fl y machos 132,5 fl, e inferior a Heijden (2007) 154 92 fl y Garavito (2000) 149 fl y superior a lo reportado por Madella (2006) 90,2 fl El tamaño del glóbulo rojo es similar en ambos grupos 114,7 fl en machos y 114,6 fl para hembras

El eritrocito del chiguiro (*Hydrochaens hydrochaens*) se destaca por su gran tamaño, teniendo un diámetro que varia de 8 5-9 μ , semejante al de elefante que posee un diametro medio de 9 1 μ (ETZEL, 1931 HAWKEY & DENNET, 1989 citado por Madella 2006) Los corpusculos de Howell-Jolly pueden estar presentes, en un pequeño numero (HAWKEY & DENNET, 1989 citado por madella 2006)

La hemoglobina corpuscular media en el estudio fue de 38,52±2 89 pg para la población total de chiguiros (Hydrochaeris hydrochaeris) en estado silvestre, es similar a los estudios reportados por Neira (2007) 34,93 pg, ISIS (2002) 40,8 pg Garavito (2000) 35 pg, Arouca (2000) en hembras 41,3 pg y machos 41 pg, e inferior a Madella (2006) 30,1 pg y superior al reporte de Heijden (2007) 47,85 pg

La concentración de hemoglobina corpuscular media para la población total es 33,84±1,66 g/dl es similar a los reportes de Neira (2007) 32 77 g/dl, Heijden (2007) 30,88 g/dl, Madella (2006) 33,3g/dl, ISIS (2002) 34,2 g/dl, Arouca (2000) en hembras 31,3 pg y machos 31,3 g/dl, Garavito (2000) 35 g/dl

El recuento de glóbulos blancos (WBC) para la población total de animales muestreados es de 17 69±4,13 mm³ siendo este valor superior al reporte de Neira (2007) 10 723 mm³, Heijden (2007) 11 628 mm³, Madella (2006) 5300 mm³, ISIS (2002) 7582 mm³, Arouca (2000) en hembras 5 200 mm³ y machos 4 630 mm³, Garavito (2000) 6948 mm³ Colvee (1976) en machos 12 750 mm³ y hembras 13 130 mm³ La media del WBC en hembras es 21,54 x10³/mm³ superior a los machos 16 62 x10³/mm³

Varios factores contribuyen a la leucocitosis fisiologica la hora del dia, la epinefrina, la ingestion de alimentos, la anestesia, el ejercicio (Garcia 1995)

La liberación de epinefrina aumenta el flujo sanguineo y provoca neutrofilia partir del compartimiento marginal (Garcia 1995). La ketamina incrementa el gasto cardiaco, la presion aortica media, la presion aortica media, la presion arterial pulmonar, la presión venosa central y el ritmo cardiaco. Ejerce un efecto variable sobre la resistencia vascular periferica. Existe la evidencia de que para que estas respuestas cardiovasculares aparezcan es necesaria la integridad del sistema adrenérgico (Christ 1997, citado por Adams 2003).

En el chiguiro (*Hydrochaens hydrochaens*), como en otros roedores tambien clasificados en el sub-orden histricomorfos, los leucocitos presentan morfologia peculiar El nucleo del neutrofilo presenta distintos lóbulos y el citoplasma contiene granulos eosinofilicos bien marcados, semejantes a aquellos encontrados en neutrofilos de conejos, al que tiene la denominación de "pseudoeosinófilos" El

tamaño y la distribución de los gránulos de pseudoeosinofilos permiten la diferenciación de estos con los verdaderos eosinofilos (ARCHER & JEFFCOTT, 1977, JAIN, 1993, HAWKEY & DENNET, 1989 citados por Madella 2006)

Asi mismo, los neutrofilos presentan gránulos acidofilos redondos, en menor cantidad y distribucion extendida en el citoplasma totalmente ocupado por mayores granulaciones, en mayor cantidad e intensamente acidofilicas (ARCHER & JEFFCOTT, 1977, JAIN, 1986, LOPES *et al* 1988 citado por Madella) El basofilo, monocito y linfocito del chiguiro se asemeja a las demas especies, pudiendo observarse eventualmente en linfocitos, como en otros roedores, inclusiones citoplasmaticas conocidas como corpusculos de Kurloff (ETZEL, 1931 JAIN, 1986, HAWKEY & DENNET, 1989 citado por Madella 2006)

El % porcentaje de neutrofilos de 25,2±14,76 % para el total de la poblacion, es inferior a lo reportado por Neira (2007) 58,60 % y superior a Garavito (2000) 12 % y Colvée (1976) en machos 12,18% y hembras 10 31%, similar al reporte de Heijden (2007) 39,38 %, Wendt (2007) 19,7%, Madella (2006) 36 6 %, ISIS (2002) 44,9% Arouca (2000) en hembras 43,1% y machos 48,6 %

En la hembra 7 (H7) se observo una inversion celular, en hembras la media de linfocitos es 55,12 %, para neutrofilos 28 75 % y se encontró en H7 un recuento de neutrofilos de 41 y 30 en linfocitos. La neutrofilia se debe al efecto de los glucocorticoides que incrementan la liberación de neutrofilos maduros desde los depositos medulares y reducen su egreso desde la sangre hacia los tejidos (Meyer 2000) o un proceso infeccioso sistemico inicial que ha estimulado las celulas de defensa inespecificas (Tizard 2000)

El porcentaje promedio de linfocitos en la poblacion muestreada fue de 58,50 ±19,08%, siendo similar a lo reportado por Wendt (2007) 51,7%, Heijden (2007) 41,67%, Madella (2006) 58,9%, Arouca (2000) en hembras 49,5% y machos

42 8%, Garavito (2000) 62 %, Colvee (1976) en machos 63,45% y hembras 66,23% y superior a lo reportado por Neira (2007) 35,4 % y ISIS (2002) 30,45%

El promedio de celulas polimorfonucleares eosinofilos de la poblacion total fue 14,10±4,28%, superior a lo reportado por Neira (2007) 1 19 %, Heijden (2007) 8,57 %, ISIS (2002) 7,6% Arouca (2000) en hembras 3% y machos 3,4 %, Madella (2006) 3,5 % e inferior a lo reportado por Wendt (2007) 25%, Garavito (2000) 36% Colvée (1976) en machos 21,82% y hembras 20,23% Es claro que se necesita profundizar en le estudio de estas celulas, para clarificar las diferencias tan marcadas entre estudios

Los monocitos promedio de la poblacion total de chiguiros es de 1 ±0 95%, similar a lo reportado por Madella (2006) 1,5 %, Garavito (2000) 1 %, Colvee (1976) en machos 0,91% y hembras 1,54% e inferior a los reportes de Wendt (2007) 3 9 %, Heijden (2007) 10,19 %, Neira (2007) 3 88 %, ISIS (2002) 3,6% Arouca (2000) en hembras 3,8% y machos 4,8 %

El recuento promedio de plaquetas poblacional corresponde a 253 166±87 824 similar a lo reportado por Neira (2007) 264 170 e ISIS (2002) 289 000

El valor medio obtenido para la glucosa fue de 103,15±36,65 mg/dl, inferior al reportado por Neira (2007) 116 mg/dl en cautiverio, y superior a los encontrados por ISIS (2002) 71,4 mg/dl y Colveé (1976) 51,1 -57,55 mg/dl

En la glucosa, las hembras presentaron una media de 110,57±37,99 mg/dl siendo mas alta que la poblacion de machos que fue de 94,5±36,40 mg/dl Las catecolaminas incrementan los niveles de glucosa en sangre, acidos grasos libres, la estimulación del sistema cardiovascular y la contraccion o relajacion del musculo liso bronquial gastrointestinal y genitourinario (Garcia 1995)

La adrenalina sobre el metabolismo de la glucosa actua sobre todo en el higado estimulando sobre tanto la glucogenolisis como la neoglucogénesis. Esta hormona enlaza en la membrana con los receptores B-adrenergicos, activándose la adenilciclasa y en consecuencia la producción de AMPc intracelular, esta a su vez activa una proteina cinasa que actua sobre la glucógeno-fosforilasa, que provoca la ruptura del glucogeno, liberándose glucógeno e incrementándose la concentracion de esta en la sangre (GARCIA 1995)

En estados fisiológicos de preñes se aumenta los requerimientos energéticos debido al proceso de crecimiento de los fetos (Radostis 2002) En consecuencia podria pensarse que las hembras tuvieran un estrés mayor que el de los machos, o más que alguna de ellas podrian estar en lactancia, parámetro que no podiamos controlar

Para el colesterol la media fue de 25,62±10,69 mg/dl, inferior a los descritos por Neira (2007) que es 46,97 mg/dl y Colvee (1976) 69,73 -73 mg/dl ligeramente superior al reportado por ISIS (2002) 21,24 mg/dl e En los triglicéridos se hallo una media 36,61±19,77 mg/dl, inferior al reportado en confinamiento por Neira (2007) 121,48 mg/dl e ISIS (2002) 152,6 mg/dl

El comportamiento del colesterol es similar para hembras 24,86±13,06 mg/dl y machos 26,50±8,24 mg/dl, diferente a trigliceridos que tiene gran intervalo entre valores de sexos, machos de 51,83±15,51 mg/dl y hembras 23,56±12,29 mg/dl Podria pensarse que de acuerdo a la velocidad de captura, anestesia del animal y estado fisiológico varia el rango de los diferentes parámetros medidos

La adrenalina actua sobre el tejido adiposo estimulando la lipolisis interviniendo en ello los receptores ß2 de las células adiposas y liberandose triglicéridos y ácidos grasos libres que proporcionan la energia necesaria al musculo esquelético (Adams 2001) Por consiguiente, animales que presentaron un proceso de captura más dispendioso y mayor estrés podrian reportar volumen de triglicéridos mas

elevados, aspecto que puede deducirse al comparar los parametros de colesterol y triglicéridos de animales en cautiverio y en estado libre

La media para las proteinas plasmaticas totales es de 6,32±0,49 g/di, similares a los obtenidos por Neira (2007) 6,12 g/di, ISIS (2002) 6,3 g/di y Arouca et al (2000) 6,4 g/di e inferiores a los descritos por Colvee (1976) 7,9 -7 85 g/di Para la albumina se hallo un valor medio de 2,94±0 26 g/di, inferior a los reportados por Neira (2007) 3,16 g/di, ISIS (2002) 3,1 g/di, similar a los de Colveé (1976) 2,85-3,13 g/di En las globulinas encontramos una media de 3,38±0,27 g/di inferior a los reportes de Colveé (1976) 5,05 -4,72 g/di

Las medias aritméticas de hembras y machos son similares para proteinas plasmáticas totales, albumina y globulinas

En la creatinina se obtuvo una media de 2,37±0,31 mg/dl, superior a los reportes de Neira (2007) 1,76 mg/dl en confinamiento, Jara y Sánchez (1998) 0,89 mg/dl en vida silvestre, ISIS (2002) 1,59 mg/dl El aumento de la creatinina es debido al esfuerzo muscular durante la captura de los ejemplares que permiten el desdoblamiento no enzimatico de la fosfocreatina en el musculo. Ademas su produccion diaria está determinada en gran medida por la masa muscular individual, los jovenes tiene concentraciones menores mientras que los machos y ejemplares bien musculosos presentan niveles más altos. La creatinina serica no es muy afectada por la dieta (Ettinger 1992)

El valor promedio de BUN fue de 22,13±4,05 mg/dl superior a los reportados por Neira (2007) 7,03 mg/dl, Jara y Sanchez (1998)18,38 mg/dl e inferior al reporte de ISIS (2002) 53,55 mg/dl

La ureapoyesis acontece en el higado mediante el ciclo de la ornitina con el uso del amoniaco (NH³) derivado del catabolismo de los aminoacidos Los aminoácidos empleados para la ureapoyesis provienen del catabolismo de las

proteinas exogenas (dietéticas) y endógenas. La excreción renal de la urea se produce mediante la filtración glomerular y las concentraciones del nitrógeno ureico sanguineo (NUS) son inversamente proporcionales al Velocidad de filtración glomerular (Ettinger 1992)

Para el acido urico se hallo una media de 4,52±1,93 mg/dl superior a los reportados por Neira (2007) 1,82 mg/dl y ISIS (2002) 0,95 mg/dl

Los hallazgos medios de Bilirrubina total fueron de 0,41±0,09 mg/dl en la poblacion total de animales muestreados, valor superior a lo reportado por Neira (2007) 0,22 mg/dl, ISIS (2002) 0,3 mg/dl y Jara y Sánchez (1998) 0,2 mg/dl El promedio de bilirrubina directa fue de 0,18±0,09 mg/dl valor similar al reportado por Neira (2007) 0,15 mg/dl inferior a ISIS (2002) 0,2 mg/dl y superior a Jara y Sánchez (1998) 0,1 mg/dl La diferencia entre bilirrubina total y bilirrubina directa es la bilirrubina indirecta cuyo promedio fue de 0,23±0,12 mg/dl en la poblacion de estudio, superior a lo reportado por Jara y Sánchez (1998) 0,09±0,05 mg/dl

Los valores medios hallados para la ALT y AST fueron de 99,7±17,71 y 119,61±63,01 UI/L respectivamente, valores muy superiores a los reportados por Neira (2007) 79,34 UI/L-88,14 UI/L, ISIS (2002) 44 UI/L-40 UI/L Jara y Sánchez (1998) 69 9 UI/L-63,97 UI/L La GGT presento una media de 4,9±1,78 UI/L, similar a lo reportado por Neira (2007) 4,2 UI/L y superior al reporte de ISIS (2002) 3±2 UI/L Segun Meyer (2000) una variedad de tejidos, notablemente el musculo esquelético e higado, contienen una elevada actividad de aspartato aminotransferasa (AST) por lo cual se deduce que el incremento especialmente de AST en la poblacion, se debe posiblemente al esfuerzo muscular que lesiono sus células y permitio la salida de las enzimas

La media de fosfatasa alcalina fue de 389 2±124,94 UI/L en la poblacion de chiguiros muestreados. Al comparar este dato con el de otras especies es similar

a los bovinos 0-488 UL y superior a equinos 143-395, caninos 20-156 y ovinos 68-387 (Diaz 2003)

La media poblacional de creatinin Kinasa fue de 358±222,58 mg/dl, superior a lo reportado por Neira (2007) 321 mg/dl e inferior a lo reportado por ISIS (2002) 817mg/dl. Los niveles elevados de esta enzima se deben a la lesión celular posiblemente a consecuencia del esfuerzo muscular que tuvieron los ejemplares y posterior derrame enzimatico. La CK cataliza la reacción reversible de creatina fosfato en la presencia de ADP para formar creatinina y ATP, un almacenamiento de energia para sostener el metabolismo muscular. Difunde con rapidez hacia el plasma a un ritmo relativamente constante proporcional a la masa muscular (Meyer 2000)

Los niveles séricos promedio de Magnesio (Mg⁺²) fueron de 2,032±0,05 mg/dl, similar al bovino 1 8-2,3 mg/dl superior a caprino 1 1-1 5 mg/dl e inferior a ovinos y equino 2,2-2,8 mg/dl (Radostits 2002) Los niveles séricos de Calcio (Ca⁺²) fueron de 6,11±1,19 mg/dl en la poblacion natural, inferior al reporte de Neira (2007) 9,62 mg/dl y superior a ISIS (2002) 2,83mg/dl Los niveles séricos de fósforo (P) fueron de 13,2±2,23 mg /dl, valor superior a Neira (2002) 6,01 mg/dl e ISIS (2002) 2,10 mg/dl

Las principales hormonas en la regulación del metabolismo del calcio, fosforo y magnesio son la hormona paratiroidea (PTH), la calcitonina (CT) y los calciferoles (Garcia 1995)

El nivel serico promedio de sodio (Na⁺²) fue de 146,83±19,57 mmol/L valor superior al reporte de Neira (2007) 131 05 mmol/L e ISIS (2002) 137 mmol/L Los niveles sericos promedio de Cloro (CI) en la población fueron de 97 6±10,08 mmol/L, superior al reporte de Neira (2007) 91,7 mmol/L, similar a ISIS (2002) 98 mmol/L, e inferior al reportado por Colveé (1976) 298 mmol/L y 301 mmol/L para

machos y hembras respectivamente. Los niveles sericos promedio de potasio (K^{+1}) fueron de 7,6±1,34 mmol/L valor superior al reporte de Neira (2007) 3,58 mmol/L e ISIS (2002) 5,2 mmol/L

La aldosterona regula la potasemia, natremia y cloremia, la potasemia aun a expensas de la disminución del potasio total del organismo. Mientras que la regulación de la natremia, por causa de otros mecanismos implicados, aumenta el contenido de agua y sodio total del organismo (Garcia 1995).

Los niveles sericos promedio de hierro (Fe $^{+2}$) fueron de 171,8±75,01 µg/dl, similar a los ovinos 166-222 µg/dl y superior al bovino 57-162 µg/dl, Caprino 73-140 µg/dl y equino 91-199 µg/dl (Radostits 2002)

6 CONCLUSIONES

- De la poblacion de chiguiros en estado silvestre durante la epoca de invierno, se encontraron los siguientes indices eritrocitarios representados en medias aritmeticas Recuento de globulos rojos (3,82 M/mm³), hematocrito (44,62%), hemoglobina (15,09 g/dl), Volumen corpuscular medio (114,6 fl), hemoglobina corpuscular media (38,52 pg) y concentracion de hemoglobina corpuscular (33,84 g/dl)
- Los indices leucocitarios para el total de chiguiros de estado silvestre durante la epoca de invierno fueron Recuento de globulos blancos (17 69 x10³/mm³), neutrofilos (25,2 %), linfocitos (58,50 %), Eosinofilos (14 10), monocitos (1%)
- El recuento de plaquetas en el total de la poblacion de chiguiros en estado natural durante la epoca de invierno fue de 253 166x mm³

Los hallazgos medios de quimica sanguinea, perfil enzimatico y mineral en la población total de chiguiros en estado natural en la época de invierno fueron

			Acido		
	Colesterol	Trigliceridos	Urico	BUN	Creatinina
Glucosa(mg/dl)	(mg/dl)	(mg/dl)	(mg/dl)	(mg/dl)	(mg/dl)
103,57	25,62	36,61	4,52	22 13	2,37

			Bilirrubina	Bilirrubina	Bilirrubina
Proteinas	Albumina	Globulina	Total	Dırecta	ındırecta
totales (g/dl)	(g/dl)	(g/dl)	(mg/dl)	(mg/dl)	(mg/dl)
6,32	2,94	3,38	0,41	0,18	0,23

Trans ALT	Trans AST	Fosfatasa		
(UI/L)	(UI/L)	alcalına(UI/L)	CK-total(UI/L)	GGT (UI/L)
99,73	119,61	389,2	358,00	4,9

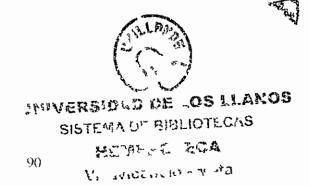
Fosforo(mg/dl)	Magnesio	Sodio(Potasio (Calcio	Cloro (Hierro
	(mg/dl)	mmol/L)	mmol/L)	(mg/dl)	mmol/L)	(µg/dl)
13,2	2,03	146 83	7,6	6,11	97,58	171,8

 Los datos obtenidos de chiguiros en habitat natural durante la época de invierno son parametros parciales debido a que falta el analisis de los datos de verano obtenidos en el municipio de Paz de Ariporo, informacion que hace parte del proyecto macro de esta modalidad de estudiante participante de investigación EPI

7 REVISIÓN BIBLIOGRAFICA

- 1 Adams, H R (2001) Farmacologia y terapeutica veterinaria Segunda edición Editorial ACRIBA S A
- 2 Arauca, M, L de Miranda (2000) Valores hematológicos de capivaras (hydrochoerus hydrochaens) criadas em cativeiro no municipio de botucatu, sp
- 3 Azcarate-Bang, T (1978) "Algunos datos sobre el comportamiento social en una manada de Chiguires (H h) En resumen del II Seminario sobre Chiguires y Babas CONICIT e Instituto de Produccion Animal Fac Agro UCV Maracay
- 4 Azcarate-Bang, T (1980) "Sociobiologia y manejo del capibara (H h) Doñana Acta Vertebrata 7 1–228
- 5 **Brock** *et al* (1970) "Analisis estomacales del Venado caramerado de los llanos venezolanos" en Biol Sol Venez Cienc Nat **28** 330–353
- 6 Colvee, P (1976) "Parametros sanguineos en Chiguires (H h) Resumen en Ildo Seminario sobre Chiguires y Babas" CONICIT I P A Fac Agro U C V Maracay Mimeo 116 p
- 7 Cortes Saad, A J (1972) "Algunas consideraciones técnicas de la especie Chiguiro (H h) para su explotacion economica en zoocriaderos" Pub del Ministerio de Agricultura, INDERENA Bogotá Mimeo 31 pp

- 8 Cruz, C A (1974) "Notas sobre el comportamiento del Chiguiro en confinamiento" ler Simposio sobre Chiguiro y Babilla Bogota, Inderena Mimeo 45 pp
- 9 Diaz, GFH y S Ceroni da Silva (2003) "Introduccion Bioquimica Clinica Veterinaria" Universidade Federal do Rio Grande do Sul Pag 175-198
- 10 Donalson, S L (1975) "The Social behaviour of capybaras in captivity" en Resumenes del Ildo Seminario sobre Chiguires y Babas CONICIT I P A Fac Agro U C V Maracay
- 11 Engelhardt, W v G Breves (2005) Fisiologia Veterinaria Editorial Acribia, S A Zaragoza, España
- 12 Eisemberg, J F Y M A O'Connell (1976) "The reproductive Characteristics of some caviomorph rodents and their implications for management" Resumen del Ildo Seminario sobre Chiguires y Babas CONICIT y I P A Fac Agro U C V Maracay
- 13 **Escobar**, **A** (1977) "Estudio sobre la sabana inundable de Gamelote (*Paspalum fasciculatum*)" Tesis de Maestria IVIC Caracas
- 14 Ettinger S J (1992) Tratado de medicina interna veterinaria Tercera edición Editorial Intermedica
- 15 **Fuerbringer**, **J** (1974) "El Chiguire, su cria y explotación racional" En temas de orientacion agropecuaria No 90 p 1– 59 Bogotá, Colombia


- 16 Garavito Jimenez, Mi L (2000) Caracterizacion Hematologica del Chiguiro Hydrochoerus hydrochaens, Tesis de Grado, Facultad de Ciencias Agropecuarias y Recursos Naturales Escuela de Medicina Veterinaria Y Zootecnia, Universidad de los Llanos
- 17 **Garcia Sacristan, A** (1995) Fisiologia Veterinaria Editorial Interamericana McGRAW-HILL, España
- 18 Gonzalez-Jimenez, E y A Escobar (1977) 'Flood adaptation and productivity of savanna grasses" Proceedings XIII International Grassland Congress P 510–514 Leipzig Akademic Verlag Berlin
- 19 Gonzalez-Jiménez, E y A Escobar (1973) "Fisiologia digestiva del Chiguire (H h) 3 Digestibilidad comparada con conejos y ovinos de raciones de diferente proporción de forrajes y concentrados" En Informe anual Proyecto CONICIT DF 030-S1 I P A Fac Agro U C V Maracay
- 20 **Gonzalez-Jimenez**, **E** (1995) El capibara (*Hydrochoerus hydrochaens*) Estado actual de su producción, Estudio FAO produccion y sanidad animal, Roma
- 21 ISIS, (2002) international Species Informatin System Referente Ranges for Physiological Values in Captive Wildlife, USA
- 22 Lopez, S (1985) "Contribucion al conocimiento de la Fisiologiade la reproducción del Chiguire (H h)" Trabajo de Ascenso Fac Agro U C V Mimeo

- 23 MaKee,T y MaKee, J R (2003) Bioquimica McGRAW-HILL Interamericana, España
- 24 Mones, A Y S Martinez (1983) "Estudio sobre la familia *Hydrochoendae* (Rodentia) XIII Parasitosis y Patologias de *Hydrochoerus* En Rev Fac Humanidades y Ciencias (Ciencia-Biol.) 1 297–329
- 25 Mones, A y J Ojasti (1986) "Hydrochoerus hydrochaeris" en Manalian Species No 264 pp 1-7 Pub The American Society of Mammalogists U S A
- 26 Madella, DA, E Rodrigues, M Felisberto y Eduardo de Souza (2006)

 Valores hematológicos de capivaras (*Hydrochoerus hydrochaens*)

 Rodentia Hydrochoeridae) de vida livre na região de Campinas-SP São Paulo state, Brazil
- 27 Mendoza, Angela (1991) 'El Chiguiro Una especie antigua en el Nuevo Mundo" Revista Humbolt Vol <u>91</u>, 80–87
- 28 Meyer, D J y J W Harvey (2000) "El Laboratorio en Medicina Veterinaria Interpretación y Diagnostico' segunda edición Editorial Intermedica Argentina
- 29 Neira, R E y Chaves, M M H (2007) Contribucion a los valores de referencia en biometria hematica, química sanguinea, perfiles enzimáticos y minerales de chiguiros *Hydrochaens hydrochaens (Linnaeus, 1776)* en tres poblaciones en confinamiento en el municipio de Villavicencio-Meta Tesis de Grado, Facultad de Ciencias Agropecuarias y Recursos Naturales, Escuela de Medicina Veterinaria Y Zootecnia, Universidad de los Llanos

- 30 Ojasti, J (1973) "Estudio Biológico del Chiguire o capibara" Fondo Nacional de Investigaciones Agropecuarias (FONAIAP) Editorial Sucre Caracas
- 31 Ojasti, J (1968) "Notes on the mating behaviour of the Capybara" J Mammology 49 534-535
- 32 Ojasti, J y A Mones (1986) "Hydrochoerus hydrochaens" en Mammalian Species 264 1–7
- 33 Radostits, O M (2002) Medicina veterinaria Novena edicion McGRAW-HILL Interamericana
- 34 Schaller, C B y P G Crawshaw (1981) "Social organization of a capybara population" Saugetierk Mitt 29 3–16
- 35 **Sosa Burgos**, **L** (1981) "Comportamiento Social del Chiguire en relacion con su manejo en cautiverio" Tesis graduación Fac Ciencias U.C.V. Venezuela Caracas 120 p. Mimeo
- 36 Szabumiewiez, M, L Sanchez, A Sosa y M Gomez (1978) "The electrocardiogram of the capibara (H h) Zbl Vet Med A 25 162–171
- 37 Tızard, I R (2000) Inmunológica veterinaria Sexta edición McGRAW-HILL-Interamericana

- 38 WENDT, L W, E KRAUSE (2006) Valores hematológicos encontrados em capivaras (*Hydrochaens hydrochaens* Linnaeu, 1766) criadas em sistema semi- intensivo na região sul do rio grande do sul
- 39 Willard, M, H Tvedten y G Turnwald (2002) "Diagnostico Clinicopatologico Practico de los Pequeños Animales" Tercera edicion Editorial Intermedica Buenos Aires, Argentina
- 40 **Zara**, J L (1973) "Breeding and husbandry of the capybara (H h) at Evannille Zoo" en Internal Zoo Year Book, <u>13</u> 137–139

Anexo Nº 1

Ро	Poblacion total de chiguiros (Hydrochaeris hydrochaeris) en estado natural en epoca de invierno											
	RBC HTO HGB MCV MCH MCHC											
_	Conoro		%	g/dl	fl		g/dl					
n 1	Genero H1	3 66	45 4	16.5	1243	pg 45 0	36 3					
2		4 09	44 9	162	1100	35 9	35 9					
3				142		42 1	36 7					
	H3	3 37	38 9		1147							
4	H4	3 93	45 5	158	1158	40 2	34 7					
_ 5	H5	3 85	46 0	147	1197	38 1	31 9					
6	H6	4 05	46 7	161	1154	39 7	34 4					
7	H7	4 23	447	147	105 9	34 7	328					
8	Н8	3 26	36 0	122	1107	37 4	33 8					
9	M1	3 94	44 6	140	1133	35 5	31_3					
10	M2	3 37	38 5	130	1145	38 5	33 7					
11	мз	4 12	48 4	15 5	1176	38 1	32 4					
12	M4	3 85	46 0	159	1196	41 2	34 5					
13	M5	4 76	51 4	169	108 1	35 5	328					
14	M6	4 17	47 8	156	1148	37 4	32 6					
-	Media	3,90	44 62	15 09	1146	38,52	33 84					
	Max	4,76	51 4	16,90	124 30	45 00	36,70					
	Min	3 26	36,0	12 20	105,90	34 70	31,30					
	Moda	3,37	46	147		38 1	32,8					
M	ediana	3,94	45 4	15,55	114 75	38 10	33 75					
Desviacion												
	S	0,40	4,16	1 36	4,90	2,89	1 66					
	urtosis	0,50	0,45	0 05	0,07	0 39	-0 85					
int	er Conf						_					
	95%	10 2	93	90	43	75	49					

Anexo Nº 2

Po	Poblacion de hembras chiguiros (Hydrochaeris hydrochaeris) en										
		estado	natural	en epoc	<u>a de inv</u>	/ierno					
		RBC		HGB	MCV		MCHC				
n	Genero	M/mm3	HTO %	g/dl	fl	MCH pg	g/dl				
1 H1		3	45 4	165	1243	45 0	3 <u>6 3</u>				
2	H2	4 09	44 9	162	1100	35 9	35 <u>9</u>				
3	H3	3 37	38 9	142	1147	42 1	36 7				
4	H4	3 93	45 5	158	1158	40 2	34 7				
5	H5	3 85	46 0	147	1197	38 <u>1</u>	31 9				
6	H6_	4 05	46 7	161	115 4	39 7	34 4				
7	H7	4 23	44 7	147	105 9	34 7	328				
8	H8	3 26	36 0	122	1107	37_4	33 8				
Pr	omedio	3 80	43 51	15,05	114,56	39 13	34 56				
	Max	4,23	46 70	16 50	124,30	45 00	36,70				
_	Mın	3,26	36,00	12,20	105,90	34 70	31,90				
	Moda			147							
M	ediana	3 89	45,15	15 25	115,05	38,90	34 55				
Desviación											
	S	0,34	3,8713	1 4233	5,7847	3 3564	1,6987				
	Curtosis	-0 <u>97</u>	0,92	1 30	-0 01	-0 13	-1 05				
Int	er Conf										
	95%	9,1	8,9	9 5	<u>5</u> ,0	8 6	4,9				

Anexo Nº 3

Ро		le macho	-			-	chaens)
	er	n estado	natural (en epoc	a de inv	/ierno	
		RBC		HGB	MCV	MCH	MCHC
n	Genero	M/mm3	HTO %	g/dl	fl	pg	g/dl
1 M1		3 94	44 6	140	1133	35 5	31 3
2	M2	3 37	38 5	130	1145	38 5	33 7
3	МЗ	4 12	48 4	155	1176	38 1	32 4
4	M4	3 85	46 0	159	1196	41 2	34 5
5	M5	4 76	51 4	169	108 1	35 5	328
6	M6	4 17	47 8	156	1148	37 4	32 6
Pr	omedio	4,03	46 11	15 15	114 65	37 70	32 88
	Max	4,76	51,40	16,90	119,60	41,20	34 50
	Min	3 37	38,50	13,00	108,10	35,50	31 30
	Moda					35,5	
M	ediana	4,03	46 90	15,55	114,65	37,75	32,70
De	sviación						
S		0 4553	4 3884	1 4068	3 9491	2 1364	1,1053
_(Curtosis	1 <u>,4</u> 6	1 65	-0 38	1 00	0,38	0,14
Inf	er Conf						
	95%	11 3	9 5	93	3 4	5,7	3,4

Anexo Nº 4

	Poblacion total de chiguiros (Hydrochaeris hydrochaeris) en estado natural en epoca de invierno									
			, idioid		<u> </u>	101110				
 N	Genero	WBC M/mm³	N %	L %	E %	м%	PLAQ			
1	H1	23 33	16	66	17	1	240 000			
2	H2		25	64	9	2	150 000			
3	Н3	23 21	33	54	13	0	310 000			
4	H4	23 02	61	22	1 <i>7</i>	0	170 000			
5	H5	17 73	7	84	7	2	300 000			
6	H6	18 28	32	51	16	1	208 000			
7	H <i>7</i>	20 44	41	30		2	200 000			
8	H8	16 93	15	70	14	1	420 000			
9	M1	1251	20	59	21	0	380 000			
10	M2	11 82	16	75	8	1	180 000			
11	МЗ	14 36	12	71	16	1	180 000			
12	M4	1 <i>7</i> 07	34	44		0	150 000			
13	M5		32	57	11	0	340 000			
14	M6	13 68	9	76	12	3	300 000			
Pr	omedio	17,7	25,21	58,8	13,4	1	252000			
	Max	23 33	61	84	21	3	420000			
	Mın	11,82	7	22	7	0	150000			
	Moda		16		17	11	150000			
M	ediana	18 005	22 5	61 5	15	11	224000			
Desviacion			,	` <u></u>						
S		4,13	14,76	17,6207	4,21	0,96077	89015,124			
	Curtosis	- 0 460092	1 198	0,186202	0.0196	- 0 39394	-0,9689058			
	oef Var	29 97096		29,97446			•			
	er Conf						- - -			
	95%	2,380156	7,23	4,25108	2 6955	1 88307	356,128124			

Anexo Nº 5

Pc	blacion (de hemb	ras chiguir	os en est	ado natur <u>c</u>	l en epoca	de invierno
		WBC					
n	Genero	M/mm ³	N %	L %	E %	M %	PLAQ
1	Hl	23 33	16	66	17	1	240 000
2	H2		25	64	9	2	150 000
3	НЗ	23 21	33	54	13	0	310 000
4	H4	23 02	61	22	17	0	170 000
5	H5	17 73	7	84	7	2	300 000
6	H6	18 28	32	51	16	1	208 000
7	H7	20 44	41	30		2	200 000
8	H8	16 93	15	70	14	1	420 000
Pr	omedio	20 42	28 75	55,13	13 29	1,125	249750
	Max	23,33	61	84	17	2	420000
	Mın	16 93	7	22	7	0	150000
	Moda				17	1	
M	lediana	20 65	28,5	59	14	1	224000
De	sviación						
	S	3,06	17,14435	20,70	3,95	0 83452296	89253,6514
C		2 225	0 (10(04	0.4701	0.450	-	0 5 4 7 4 0 0 5 0
	Curtosis	-3 085	0 619604	-0 4781	2 459	1 39171598	0,54760053
ותו	er Conf 95%	19 0007	59 6325	37 5A75	AN A73389	74,1798187	35 7371978
	73/0	17 0007	37 0323	5/ 54/5	70,4/3307	77,1770107	33,737 1770

Anexo Nº 6

Poblacion de machos chiguiros (Hydrochaeris hydrochaeris) en estado natural en epoca de invierno **WBC** n Genero M/mm³ Ν% L % E % M % PLAQ 1 M1 59 21 0 12 51 20 380 000 2 M2 11 82 16 75 8 1 180 000 3 M3 14 36 12 71 16 1 180 000 4 M4 17 07 34 44 0 150 000 5 M5 32 57 11 0 340 000 12 3 6 M6 13 68 9 76 300 000 Promedio 13,88 20 5 63 67 13,60 0 83 255000 Max 30 29 34 76 22 3 380000 Min 11 82 9 44 8 0 150000 180000 Moda 0 Mediana 14 02 18 12 05 240000 65 Desviación S 2,03 10 38749 12 55 5 03 117 97108,1871 Curtosis 4 5651 -1,81125 -0,757 -0 057 2,55205235 2,43001679 19 7098 37,712362 38,081642 Coef Var 41,747 50 6707 Inter Conf 3 9261 4,552436 3 20196 2,4194321 95% 308 753677

Anexo Nº 7

	QUIMICA SANGUINEA DE CHUIGUIRO (Hydrochaens hydrochaens) EN LA POBLACION TOTAL EN ESTADO SILVESTRE DURANTE LA EPOCA INVIERNO												
n	Genero	Glucos	Coleste rol	Triglicerid os	Acido Urico	BUN	Creatinin a	Proteinas Totales	Albumin a	Globulin a	Bilirrubina Total	Bilirrubina Directa	Bilirrubina indirecta
	Unidad	mg/dl	mg/dl	mg/dl	mg/dl	mg/dl	mg/dl	g/dl	g/dl	g/dl	mg/di	mg/dl	mg/dl
1	н1	120	49	148	43	193	2 37	64	3	3 4	0 4	0 27	0 13
2	H2	109	18	22	37	22 5	2 1 5	66	3	36	0 41	031	01
3	нз	61	18	41	59	20 7	2 69	61	29	32	0 29	021	0 08
4	Н4	74	11	28	32	24 5	2 62	61	28	33	0 52	0 03	0 49
5	H5	120	36	61	3 4	159	1 88	64	3 1	33	0 4	0 17	0 23
6	Н6	111	21	17	23	28 2	2 0 5	7 4	3 5	39	0 36	0 03	0 33
7	H7	179	21	36	1	46 5	2 38	66	3	36	0 33	014	0 19
8	м1	48	26	52	72	21 1	2 43	5 6	26	3	0 45	0 15	03
9		63	12	27	51	22 5	273	5 4	25	29	0 64	0 28	0 36
10	мз	104	24	42	4.5	30 5	25	62	28	3 4	0 37	016	0 21
11	M4	149	31	58	79	20 4	2 63	6.5	28	37	0 37	0 28	0 09
	M5	89	30	71	61	21 7	2 52	6.5	32	33	0 45	0 21	0 24
	M6	114	36	61	41	183	18	62	3	33	0 32	01	0 22
Med		103 15	25 62	36 61	4 52	24 01	2 37	6 31	2 94	3 38	0 41	0 18	0 23
Max		179	49	71	79	46 5	2 73	7,4	3 5	3 9	0 64	0 31	0 49
Min		48	11	61	1	15 9	18	5 4	2 5	2 9	0 29	0 03	0 08
Mod		120	18		-	22 5		64	3	3 3	04	0 21	
	diana	109	24	36	4,3	21 7	2,43	64	3	3,3	0 4	0 17	0 22
D s		36 65	10 69	19 77	1 93	7 79	0 31	0 49	0 26	0 27	0 09	0 09	0 12
	tosis	0 159	0,415	0 933	0 176	5 957	0 631	1,721	1 027	0 059	2,329	-0 806	0 394
	Var	35 53	41,73	54 01	42 67	32 46	12 92	7,78	8 74	8 12	22,68	51 02	52 19
	ter Conf 95%	6 56	2 99	10 36	1 89	3 50	0 42	0 39	0 29	0 31	0 029	0 035	0 065

Anexo Nº 8

ENZIMOLOGIA CLINICA DE CHIGUIRO (Hydrochaeris hydrochaeris) EN LA POBLACION TOTAL EN ESTADO SILVESTRE DURANTE LA POCA DE INVERNO

	JIL V LJ	INC DON		TOCABL		
				Fosfatasa	CK-	COT
n	Genero	ALT	AST	alcalına	total	GGT
U	nıdad	UI/L	UI/L	UI/L	UI/L	UI/L
1	Hl	1049	57 6	206	112	73
2	H2	106 9	87 5	537	308	48
3	H3	87 5	159	292		32
4	H4	70 6	2196	333		58
5	H5	1118	67	367	338	4
6	H6	108 4	82 1	606	390	51
7	H7	65 5		568		32
8	M1	101 1	110	201	858	17
9	M2_	1028	92 4	444		28
10	мз	133 8	938	364	185	6 4
11	M4	98 9	173 7	367	364	68
12	M5	947	239 1	364		69
13	M6	109 6	53 5	409	309	53
A	Media	99,73	119 61	389 08	358,00	4 87
	Max	133 8	239 1	606	858	73
	Min	65 5	53 5	201	112	1,7
-	Moda			367		3 2
M	ediana	102 8	93 1	367	323,5	5,1
	D s	17 71	63 01	125 18	222 58	1 78
С	urtosis	0,981	-0,431	-0,445	4,469	-1,056
С	of Var	17 76	52,68	32,17	62,17	36,48
Int	er Conf					
	95%	3 40	16 36	17,09	41 22	1 32

Anexo Nº 9

F	PERFIL MINERAL DE CHIGUIRO (Hydrochaeris hydrochaeris) EN LA POBLACION EN ESTADO SILVESTRE DURANTE LA EPOCA DE INVIERNO										
n	Genero		Magnesio	Sodio	Potasio	Calcio	Cloro	Hierro			
	Inidad	mg/dl	g/dl	Mmol/L	Mmol/L	mg/dl	Mmol/L	g/dl			
1	HI	144	2 08	145	65	6 39	101	309 1			
2	H2	144	2 09	135	72	5 84	94	155 2			
3	Н3	144	2 1	164	10 4	6 35	101	137 5			
4	H4	13	2 1	126	83	4 61	87				
5	H5	121	21	165	7	8 13	106				
6	Н6	111	1 99	146	51	5 62	100				
7	H7	9	201								
8	MI		201	128	8	5 42	91	85 5			
9	M2	129	2	132	8 5	5 16	91				
10	мз	114	201	137	7 4	6 18	95	157 9			
11	M4	14	1 98	132	71	53	90				
12	M5	18	1 <u>9</u> 6	146	9	5 66	91	185 5			
13	M6	13 7	1 98	193	71	8 68	124				
	Media	13 20	2 03	145 75	7 63	611	97 58	171 78			
	Max	18	2,1	193	10,4	8 68	124	309,1			
	Min	9	1,96	126	5,1	4 61	87	85,5			
	Moda	14 4	2 1	146	71		91				
M	ediana	13,35	2 01	141	73	5,75	94,5	156 55			
	D s	2 23	0,05	19 57	1 34	119	10 08	75 01			
	Curtosis	1,538	-1 776	1,957	1 142	1,182	3,823	2,871			
_ C	of Var	16,92	2 63	13,43	17 56	19 50	10,33	43,67			
Inter Conf 95%		1 17	0,07	3,19	1 07	0,95	1 97	8 36			

101

Anexo Nº 10

QUIMICA SANGUINEA DE CHUIGUIRO (Hydrochaeris hydrochaeris) DE HEMBRAS EN ESTADO SILVESTRE DURANTE LA
EPOCA DE INVIERNO

				Acid			Protein			Bilirrubi	Bilirrubi	
Gene	Gluco	Colester	Triglicerid	0		Creati	as	Albumi	Globuli	na	na	Bilirrubina
n ro	sa	ol	os	Urico	BUN	nina	Totales	na	na	Total	Dırecta	ındırecta
Unida				mg/	mg/							
d	mg/dl	mg/dl	mg/dl	dl	dl	mg/dl	g/dl	g/dl	g/dl	mg/dl	mg/dl	mg/dl
<u>1</u> H1	120	49	148	43	193	2 37	64	3	3 4	0 4	0 27	0 13
2 H2	109	18	22	37	22 5	215	66	3	36	0 41	0.31	01
3 H3	61	18	41	59	20 7	2 69	61	29	3 2	0 29	0 21	0 08
4 H4	74	11	28	32	24 5	2 62	61	28	33	0 52	0 03	0 49
5 H5	120	36	61	3 4	159	1 88	64	3 1	33	0 4	0 17	0 23
6 H6	111	21	17	23	28 2	2 05	74	3_5	39	0 36	0 03	0.33
7 H7	179	21	36	1	46 5	2 38	66	3	36	0 33	0 14	0 19
Media	110,57	24 86	23,56	3 40	25,37	2 31	6,51	3,04	3 47	0,39	0,17	0,22
Max	179	49	41	5,9	46,5	2,69	7,4	3 5	3,9	0,52	0,31	0 49
Min	61	11	6,1	1	15 9	1,88	6 1	2,8	3 2	0,29	0 03	0,08
Moda	120	18					6,4	3	3,6	0,4	0,03	
Median												
а	111	21	22	3,4	22 5	2,37	6,4	3	3,4	0 4	0,17	0,19
D s	37,99	13 06	12,29	1 54	10,10	0,30	0,44	0,22	0,24	0,07	0 11	0,15
Curtosis	1,27	0,97	-0 94	0,83	3,99	-1,21	2 90	3,65	0,15	1,39	-1,31	0,77
Cof Var	34 35	52,53	52 15	45,18	39 80	12 85	6,77	7,31	7,00	18 85	65,72	65 98
Inter												
Conf											2 2 4 5	
95%	6,80	3 66	6 44	1 51	4,54	0 41	0,35	0,25	0,27	0,023	0 041	0,079


Anexo Nº 11

ENZIMOLOGIA CLINICA DE CHIGUIRO (Hydrochaeris hydrochaeris) EN HEMBRAS EN ESTADO SILVESTRE DURANTE LA EPOCA DE INVIERNO

n	Genero	ALT	AST	Fosfatasa alcalina	CK- total	GGT
U	nidad	UI/L	UI/L	UI/L	UI/L	UI/L
1	H1	104 9	57 6	206	112	73
2	H2	106 9	87 5	537	308	48
3	НЗ	87 5	159	292		32
4	H4	70 6	219 6	333		58
5	H5	1118	67	367	338	4
6	H6	108 4	82 1	606	390	5 1
7	H7	65 5		568		32
٨	Media	93,66	112 13	415,57	287 00	4,77
	Max	1118	2196	606	390	7,3
	Mın	65,5	57,6	206	112	3,2
1	Moda					3 2
M	edia <u>na</u>	104,9	84 8	367	323	4,8
	D s	19 <u>19</u>	63,66	154 17	121 49	1 48
С	urtosis	-1 57	0 24	-1,86	2,68	-0,05
С	of Var	20 49	56,77	37 10	42,33	30 96
Int	er Conf					
	95%	3,69	16 53	21,05	22 50	1,09

Anexo Nº 12

PE	PERFIL MINERAL DE CHIGUIRO (Hydrochaens hydrochaens) EN HEMBRAS EN ESTADO SILVESTRE DURANTE LA EPOCA DE INVIERNO											
n	Genero	Fosforo	Magnesio	Sodio	Potasio	Calcio	Cloro	Hierro				
L	<u>Inidad</u>	mg/dl	g/dl	Mmol/L	Mmol/L	mg/dl	Mmol/L	g/dl				
1	H1	144	2 08	145	65	6 39	101	309 1				
2	H2	144	2 09	135	72	5 84	94	155 2				
3	Н3	144	21	164	10 4	6 35	101	137 5				
4	H4	13	21	126	83	4 61	87					
5	H5	121	21	165	7	8 13	106					
6	Н6	111	1 99	146	51	5 62	100					
7	H7	9	2 01									
I	Media	12 63	2,07	146,83	7 42	6,16	98 17	200,60				
	Max	14,4	2,1	165	10,4	8 13	106	309 1				
	Min	9	1 99	126	51	4 61	87	137 5				
	Moda	144	2,1				101					
M	ediana	13	2,09	145,5	7,1	6,095	100,5	155,2				
	D s	2 05	0 05	15 51	1 79	1 16	6,68	94 38				
	urtosis	0,06	-0 55	-1,37	1 13	1,77	0 71					
С	of Var	16,27	2,26	10,56	24,20	18,89	6 80	47,05				
Int	er Conf 95%	1,08	0 06	2,52	1 44	0 93	1,30	10 52				

Anexo Nº 13

QUIMICA SANGUINEA DE CHUIGUIRO (Hydrochaeris hydrochaeris) DE MACHOS EN ESTADO SILVESTRE DURANTE LA EPOCA DE INVIERNO

			_								Bilirrubi	Bilirrubi	
	Gene	Gluco	Coleste	Triglicerid	Acido		Creati	Protein	Albumi	Globuli	na	na	Bilirrubina
N	ro	sa	rol	os	Urico	BUN	nına	as tot	na	na	Total	Dırecta	ındırecta
					mg/d								
	Unid	mg/dl	mg/dl	mg/dl	1_	mg/dl	mg/dl	g/dl	g/dl	g/dl	mg/dl	mg/dl	mg/dl_
1	Ml	48	26	52	7 2	21 1	2 43	56	26	3	0 45	0 15	03
2	M2	63	12	27	51	22 5	2 73	5 4	25	29	0 64	0 28	0 36
3	МЗ	104	24	42	4 5	30 5	25	62	28	3 4	0 37	0 16	0 21
4	M4	149	31	58	79	20 4	2 63	6.5	28	37	0 37	0 28	0 09
5	M5	89	30	71	61	21 7	2 52	6.5	3 2	33	0 45	0 21	0 24
6	M6	114	36	61	4 1	183	18	62	3	33	0 32	0 1	0 22
A	Nedia	94 5	26 5	51,83	5 82	22,42	2 44	6 07	2,82	3,27	0 43	0,20	0 24
	Max	149	36	71	7,9	30,5	2,73	6,5	3,2	3,7	0,64	0,28	0,36
	Min	48	12	27	4 1	18,3	1,8	5 4	2,5	2,9	0 32	0,1	0 09
	Moda							6,2	2,8	3,3	0,45	0,28	
N	ledian												
	а	96,5	28	55	5,6	21 4	2,51	6,2	2,8	3,3	0,41	0,185	0,23
	D s	36 40	8,24	15,51	1 52	4,21	0,33	0,46	0 26	0 29	0 11	0 07	0 09
C	urtosis	-0,42	1 79	0 20	-1,71	3,95	4 06	-1,45	-0,57	-0,24	2,35	-1,66	0,89
C	of Var	38 52	31,09	29,92	26,11	18,78	13,49	7,64	9,10	8 80	26 14	37,32	38 60
	Inter												
	Conf												
	95%	10,30	3,17	4 22	1,12	1,80	0,46	0 41	0 36	0,33	0 261	0 373	0 386

Anexo Nº 14

ENZIMOLOGIA CLINICA DE CHIGUIRO (Hydrochaeris hydrochaeris) DE MACHO EN ESTADO SILVESTRE DURANTE LA EPOCA DE INVIERNO

				Fosfatasa	CK-	
n	Genero	ALT	AST	alcalina	total	GGT
U	nıdad	UI/L	UI/L	UI/L	UI/L	UI/L
1	MI	101 1	110	201	858	17
2	M2	1028	92 4	444		28
3	МЗ	133 8	938	364	185	64
4	M4	98 9	173 7	367	364	68
5	M5	947	239 1	364		69
6	M6	109 6	53 5	409	309	53
A	Aedia	106,8	127 1	358,17	429 00	4,98
	Max	133,8	239 1	444	858	6,9
	Min	947	53 5	201	185	17
F	Moda			364		
M	ediana	101 95	101,9	365 5	336,5	5,85
	D s	14,10	67 44	83,43	295 64	2 22
С	urtosis	3 61	0,32	3 45	2 93	-1 42
С	of Var	13 20	53 06	23,29	68 91	44 54
Inte	er Conf					
95%		<u>2,</u> 75	12 60	11 53	19 78	4,35

Anexo Nº 15

PERFIL MINERAL DE CHIGUIRO (Hydrochaeris hydrochaeris) DE MACHOS EN ESTADO SILVESTRE DURANTE LA POCA DE INVIERNO

n	Genero	Fosforo	Magnesio	Sodio	Potasio	Calcio	Cloro	Hierro
į	Jnidad	mg/di	g/dl	Mmol/L	Mmol/L	mg/dl	Mmol/L	g/dl
1	MI		201	128	8	5 42	91	85 5
2	M2	129	2	132	8 5	5 16	91	
3	МЗ	11 4	2 01	137	7 4	6 18	95	157 9
4	M4	14	1 98	132	71	53	90	
5	M5	18	1 96	146	9	5 66	91	185 5
6	M6	137	1 98	193	7 1	8 68	124	
	Media	14,00	1,99	144 67	7,85	6 07	97 00	143,0
	Max	18	2 01	193	9	8 68	124	185 5
	Min	114	1,96	128	71	5 16	90	85,5
	Moda		2,01	132	71		91	
N	\ediana	13 7	1 99	134 5	77	5 54	91	157 9
	D s	2,45	0 02	24 48	0 79	1 33	13,34	51,65
	Curtosis	2,47	-1 17	4 65	-1 50	4,48	5,63	
	of Var	17,52	1,01	16 92	10 02	21 91	13 75	36 12
In	er Conf							
95%			0,03	4,24	0,55	1,17	2,74	10,98

Anexo Nº 16

Valores individuales de eritrograma PPT y fibrinogeno en capivaras (Hydrochaeris hydrochaeris) machos criados en regimen de cautiverio en botucatu-Sao Paulo

	Entrocitos	Hb	VG	VCM	нсм	СНСМ	PPT	FP
Anımal	(x10 ⁶ /µl)	(g/dl)	(%)	(fl)	(pg)	(%)	(g/dl)	(mg/dl)
M1	4 08	156	51	125	38 2	30 6	63	300
M2	3 83	162	54	141	42 2	30	68	200
мз	3 37	146	44	131	43 3	33 2	64	200
M4	3 36	138	46	137	41 1	30	6	200
M5	3 48	148	45	129	42 5	328	64	300
Χ	3 62	15	48	133	41 1	31 3	63	240
S	0 32	09	43	63	19	1.5	02	54 7
Md	3 48	148	46	131	42 2	30 6	64	200
Χı	3 36	138	44	125	38 2	30	6	200
Xs	4 08	162	54	141	43 3	33 2	68	300

Anexo Nº 17

Valores individuales de eritrograma PPT y fibrinogeno en capivaras (Hydrochaeris hydrochaeris) hembras criados en regimen de cautiverio en botucatu- Sao Paulo

	regimen	ue cuc	IIIVEII	OCHL	oloca	10-300	uoio	
	Eritrocitos	Hb	VG	VCM	нсм	СНСМ	PPT	FP
Anımal	(x106/µl)	(g/dl)	(%)	(fl)	(pg)	(%)	(g/dl)	(mg/dl)
Fl	3 65	146	47	129	40	31 1	68	400
F2	3 54	144	47	133	40 6	30 6	68	600
F3	3 58	148	48	134	41 3	30 8	63	300
F4	4 25	172	53	125	40 5	32 4	64	200
F5	3 55	155	48	135	43 1	31 9	66	200
F6	3 74	159	51	136	42 5	31 2	58	200
Χ	3 71	154	49	132	41 3	31 3	64	3166
S	0 27	1	24	44	12	06	03	160 2
Md	3 61	15 15	48	133	40 9	31 1	6.5	250
XI	3 54	144	47	125	40	30 6	58	200
xs	4 25	172	53	136	43 1	32 4	68	600

x media, s desviación estandar, Md mediana, xi limite inferior, xs limite superior Fuente Arouca M E 2000

Anexo Nº 19

Valores individuales de leucograma de capivaras (Hydrochaeris hydrochaeris) machos criados en regimen de cautiverio en Botucatu-Sao Paulo

Animal	Animal Leucocitos/µl		Neutrofilos		Linfocitos		Basofilos		eosinofilos		Monocitos	
, 1		%	/µl	%	/µl	%	/µl	%	/µl	%	/µl	
MI	4100	55	2255	37	1517	0	0	4	164	4	164	
M2	7350	37	2719	55	4043	0	0	3	221	5	367 5	
мз	4250	60	2550	28	1190	-	43	4	170	7	297 5	
M4	3100	43	1333	48	1488	1	31	4	124	4	124	
M5	4350	48	2088	46	2001	0	0	2	87	4	174	
Х	4630	48 6	2189	43	2068	0	15	3 4	153	5	225 4	
S	1600	9 18	538 2	10	1196	1	21	08	50 4	1	102 5	
Md	4250	48	2 255	46	1517	0	0	4	164	4	174	
Xı	3100	37	1333	28	1190	0	0	2	87	4	124	
Xs	7350	60	2720	55	4143	1	43	4	220	7	367 5	

Anexo Nº 20

Valores individuales de leucograma de capivaras (Hydrochaeris hydrochaeris) hembras criados en regimen de cautiverio en Botucatu-Sao Paulo

Anımal	Leucocitos/µl	Neutrofilos		Lınf	Linfocitos		Basofilos		eosinofilos		Monocitos	
			/ <u>µl</u>	%	/µl	%	/µl	%	/µl	%	/µl	
F1	3450	44	1518	47	1621	1	34	1_	34	7	241	
F2	4050	44	1782	46	1863	0	0	6	243	4	162	
F3	6800	45	3060	48	3264	0	0	3	204	4	272	
F4	5800	36	2088	54	3123	1	58	5	290	4	232	
F5	5300	48	2544	47	2491	1	53	1_	53	3	159	
F6	5800	42	2436	55	3190	0	0	2	116	1	58	
X	5200	43 1	2238	50	2592	0.5	24 3	3	1567	4	187 4	
S	1238	4	558	4	7 17	0.5	27 6	2	104 6	2	77 8	
Md	5550	44	2262	48	2807	0.5	173	3	160	4	197	
Χı	3450	36	1518	46	1621	0	0	1	34	1	58	
Xs	6800	48	3060	55	3264	1	58	6	290	7	272	

x media, s desviacion estándar, Md mediana, xi limite inferior, xs limite superior Fuente Arouca M E 2000

Anexo Nº 21

RANGOS DE REFECENCIA PARA (Hydrochaeris hydrochaeris) EN POBLACIONES EN CONFINAMEINTO EN EL MUNICIPIO DE VILLAVICENCIO (META)										
HEMOGRAMA	MEDIA	D s	TAMAÑO DE LA MUESTRA	MUESTRAS VALIDAS						
RECUENTO DE GLOGULOS ROJOS X103/UI	41307	81 <i>7</i>	44	42						
RECUENTO DE GLOBULOS BLANCOS	11007	<u> </u>								
mm3	8699 3	3045 1	44	42						
HEMOGLOBINA g/dl	14	1 49	44	42						
HEMATOCRITO %	42 4	4 27	44	42						
VOLUMEN CORPUSCULAR MEDIO fl	105 95	20 53	44	42						
HEMOGLOBINA CORPUSCULAR										
MEDIA pg	34 93	6 42	44	42						
CONCENTRACION DE HEMOGLOBINA CORPUSCULAR										
MEDIA %	0 32	03	44	42						
TROMBOCITOS X103	264 17	42 49	44	42						
RECUENTO DIFERENCIAL			44	42						
NEUTROFILOS %	58 5	9 43	44	42						
LINFOCITOS%	35 4	9 77	44	42						
EOSINOFILOS%	3 88	2 62	44	42						
MONOCITOS%	1 19	1 042	44	42						
BASOFILOS %	0 95	1 058	44	42						
QUIMICA SANGUINEA										
PROTEINAS PLASMATICAS TOTALES										
g/dl	612	0.83	44	42						
ALBUMINA g/di	3 16	0 32	44	25						
GLUCOSA mg/dl	1169	37 6 <u>5</u>	44	39						
CREATININA mg/dl	1 76	0 47_	44	35						
BUN mg/dl	7 03	3 52	44	34						
ACIDO URICO mg/dl	1 82	161	44	25						
COLESTEROL mg/dl	46 97	29 61	44	33						
TRIGLICERIDOS mg/dl	121 48	122 31	44	35						
BILIRRUBINA TOTAL mg/dl	0 229	01	44	20						
BILIRRUBINA DIRECTA mg/dl	0 158	0 09	44	20						
ENZIMOLOGIA CLINICA										
ALANINA AMINO TRANSFERASA (ALT)	70.0	07.0-	, .	0-						
UI/L	79 34	27 37	44	25						

ASPARTATO AMINO TRANSFERASA (AST) UI/L	88 14	38 51	44	25
GAMA GLUTAMIL TRANSFESA (GG)				
UI/L	4 2	2 17	44	25
CRATININ QUINASA (CK) UI/L	321 28	378 62	44	_25
PERFIL MINERAL				
Ca mg/dl	9 62	1 84	44	24
P mg/dl	6 015	2 49	44	_24
Na Mmol/L	131 05	16 04	44	24
K Mmol/L	3 58	0 93	44	24
Cl Mmol/L	91 78	9 49	44	

(Neira y Chavez 2007)

Anexo Nº 22

Capyvara Valores fisiologico Hydrochaens hydrochaens									
PRUEBA	unidad	x	s	xi	x s	Tamaño muestra	Animales		
RECUENTO DE CELULAS BLANCAS	X109/L	7 582	3 051	29	163	112	71		
RECUENTO DE CELULAS DE ROJA	X1012/L	3 49	08	22	7 22	103	62		
HEMOGLOBINA	g/L	141	21	90	232	97	62		
HEMATOCRITO	L/L	0 417	0 048	03	0 52	125	76		
VOLUMEN CORPUSCULAR MEDIO	FI/L	123 2	24 1	57 6	211	102	62		
HEMOGLOBINA CORPUSCULAR MEDIA	pg/Cel	40 08	62	199	64 9	93	58		
CHCM	g/L	342	52	205	545	96	62		
RECUENTO DE PLAQUETAS	x 1012/L	0 289	0 071	0 18	0 42	22	18		
NEUTROFILOS SEGMENTADOS	X109/L	4017	2 094	0 041	9 55	107	68		
LINFOCITOS	X109/L	2 79	1 968	0416	10 1	108	69		
EOSINOFILOS	X109/L	0 699	0 935	0 031	3 586	53	42		
MONOCITOS	X109/L	0 333	0 259	0 001	1 063	94	62		
BASOFILOS	X109/L	1 213	1 474	0 032	42	16	42		
NEUTROFILOS EN BANDAS	X109/L	0 092	0 046	0 032	0 195	12	7		
PROTEINAS PLASMATICAS TOTALES	g/L	63	9	43	88	76	43		
ALBUMINA	g/L	31	6	15	48	66	38		
GLUCOSA	mMol/L	7 104	2 498	1 388	16 48	86	52		
CREATININA	ugmol/L	159	48	88	256	85	51		
BUN	mMol/L	5 355	2 499	1 428	12 85	84	51		
ACIDO URICO	mMol/L	0 095	0 06	0 0 1 8	0 208	21	20		
COLESTEROL	mMol/L	2 124	0 7252	1 062	4 533	64	42		
TRIGLICERIDOS	mMol/L	1 526	1 096	0 2895	4 497	25	23		
BILIRRUBINA TOTAL	ugmol/L	3	3	0	17	66	40		
BILIRRUBINA DIRECTA	ugmol/L	2	2	0	9	20	16		
ALANINA AMINO TRANSFERASA [ALT]	UI/L	44	36	5	221	76	48		
ASPARTATO AMINO TRANSFERA (AST)	UI/L	40	23	7	110	78	55		
GAMA GLUTAMIL TRANSFESA (GG)	UI/L	3	2	0	7	22	18		
CRATININ QUINASA (CK)	UI/L	8 17	1903_	11	9292	30	32		
Са	mMol/L	2 38	0 25	2 38	3 85	71	46		
Р	mMol/L	21	1 13	0 65	64	57	38		
Na	mMol/L	137	6	126	161	66	43		
κ	mMol/L	52	11	36	8 2	59	40		
CI	mMol/L	98	6	89	115	70	47		

Rangos de referencia calculados para ambos sexos en todas las edades iSIS 2002

Anexo Nº 23

VALORES OBTENIDOS DE SERIE ERITROCITARIA DE 14 CAPIVARAS DE VIDA LIBRE EN LA REGION DE CAMPINAS -SP								
Unidad	m	ds						
X106/uL	45	4 02						
g/dl	135	0.5						
%	40 4	2						
fl	90 2	1						
pg	30 1	07						
g/dl	33 3	1						
LEUCOGRAMA								
x103/UL	53	2						
%	1	21						
%	36 6	199						
%	35	117						
%	0	0						
%	58 9	196						
%	15	21						
	IAS -SP Unidad X106/UL g/dl % fl pg g/dl x103/UL % % %	MAS -SP Unidad m X106/UL 45 g/dl 135 % 404 fl 902 pg 301 g/dl 333 x103/UL 53 % 1 % 366 % 35 % 0 % 589						

(Madella 2002)