Publicación:
Fabricación de nanofibras de TiO2/ZnO para aplicaciones de almacenamiento de energía

dc.contributor.authorCamargo Silva, Sandra Milenaspa
dc.contributor.authorMuñoz Prieto, Efrénspa
dc.contributor.authorVera Graziano, Ricardospa
dc.date.accessioned2017-07-16 00:00:00
dc.date.accessioned2022-06-13T17:42:08Z
dc.date.available2017-07-16 00:00:00
dc.date.available2022-06-13T17:42:08Z
dc.date.issued2017-07-16
dc.description.abstractSe estudiaron nanofibras de TiO2/ZnO preparadas por calcinación de fibras precursoras de poli (vinil acetato), isopropóxido de titanio y nano polvo de zinc elaboradas por la técnica de electrohilado. La estructura y la morfología de las nanofibras de TiO2/ZnO y fibras precursoras se caracterizaron por Microscopia Electrónica de Barrido (SEM), Microscopia Electrónica de Barrido de Emisión de Campo equipado con Espectroscopia Dispersiva de Rayos X (FESEM-EDS), Espectroscopia de Infrarrojo con Transformada de Fourier (FTIR) y Difracción de Rayos X (XRD). El análisis XRD mostró la estructura cristalina de los óxidos de titanio (anatasa) y de zinc (wurzita hexagonal), después de calcinar las fibras precursoras a 500 °C. Las microfotografías de SEM muestran que tanto las fibras precursoras como las nanofibras forman redes uniformes y buena morfología. Estas nanofibras de dióxido de titanio /óxido de zinc presentan buen área de superficie y diámetros de 200 nm apropiados que podrían ser de aplicación potencial en el campo de energía renovable, en particular, para la fabricación de celdas solares.spa
dc.description.abstractThe TiO2 /ZnO nanofibers prepared by the calcination of polyvinyl acetate of precursor fibers, titanium isopropoxide and nano zinc powder produced by the electrospinning technique were studied. The structure and morphology of TiO2 /ZnO nanofibers and precursor fibers were characterized by Scanning Electron Microscopy (SEM), Field Emission Scanning Electron Microscopy coupled to Energy Dispersive X-ray spectroscopy (FESEM-EDS), Fourier Transform Infrared Spectroscopy (FTIR) and XRD (X Ray Diffraction). XRD analysis displayed crystalline structures of titanium oxides (anatase) and zinc (hexagonal wurzite), after calcining the precursor fibers at 500 °C. SEM microphotographs display that both precursor fibers and nanofibers form uniform networks and good morphology. These titanium dioxide / zinc oxide nanofibers get good surface area and appropriate 200 nm diameters which could potentially be applied in the renewable energy field, particularly for solar cells manufacturing.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.22579/20112629.431
dc.identifier.eissn2011-2629
dc.identifier.issn0121-3709
dc.identifier.urihttps://repositorio.unillanos.edu.co/handle/001/2653
dc.identifier.urlhttps://doi.org/10.22579/20112629.431
dc.language.isospaspa
dc.publisherUniversidad de los Llanosspa
dc.relation.bitstreamhttps://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/431/1022
dc.relation.citationeditionNúm. 1 Sup , Año 2017spa
dc.relation.citationendpage63
dc.relation.citationissue1 Supspa
dc.relation.citationstartpage56
dc.relation.citationvolume21spa
dc.relation.ispartofjournalOrinoquiaspa
dc.relation.referencesChuangchote S, Sagawa T, Yoshikawa S. Efficient dye sensitized solar cells using electrospun TiO2 nanofibers as a light harvesting layer. Appl Phys Lett. 2008;93: 033310spa
dc.relation.referencesDoshi J. The Elecrospinning Process and Applications of Electrospun Fibers, Ph.D. Thesis, University of Akron, Akron, OH, 1994spa
dc.relation.referencesFormhals A. Process and apparatus for preparing artificial threads, US Patent\ 1,975,504, 1934.spa
dc.relation.referencesGibson PW, Schreuder-Gibson HL, Riven D, AIChE J. 1990;45:190spa
dc.relation.referencesJiang H, et al. "A Facile Technique to Prepare Biodegradable Coaxial Electrospun Nanofibers for Controlled Release of Bioactive Agents". J Controlled Releas. 2005;108:237spa
dc.relation.referencesKanjwal Muzafar A, et al. “Photocatalytic Activity of ZnO-TiO2 Hierarchical Nanostructure Prepared by Combined Electrohilado and Hydrothermal Techniques”. Macromol Res. 2010;18(3):233-240spa
dc.relation.referencesKanmani SS, Ramachandran K. “Synthesis and characterization of TiO2/ZnO core/shell nanomaterials for solar cell applications”. Renew Energ. 2012;43:149 -156spa
dc.relation.referencesLee Suck-Hyun, Jung-Woo Yoon. “Continuous Nanofibers Manufactured by Electrohilado Technique”. Macromol Res. 2002;10(5):282-285spa
dc.relation.referencesLi W, et al. "Electrospun Nanofibrous Structure a Novel Scaffold for Tissue Engineering". Biomed Mater. 2002;(60):613spa
dc.relation.referencesLiu L, et al. Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrohilado. Sens. Actuator B Chem. 2011;155:782–788spa
dc.relation.referencesMuhammad I, Sajjad H, Kaleem A, Asif Mahmood, Waheed A. Al-masry. Fabrication and characterization of zinc oxide nanofibers for renewable energy applications. Arabian Journal of Chemistry. 2013. http://dx.doi.org/10.1016/j.arabjc.2013.01.013spa
dc.relation.referencesNasser AM, Barakat AM, Hamza-Salem S, Al-Deyab AQ, Hak YK. Titanium-based polymeric electrospun nanofiber mats as a novel organic Semiconductor. Materials Science and Engineering B. 2012;177(1):34- 42spa
dc.relation.referencesNorris ID, Shaker MM, Ko FK, MacDiarmid AG. Electrostatic fabrication of ultrafine conducting fibers: polyaniline /polyethylene oxide blends. Synth Met. 2000;114:109-114spa
dc.relation.referencesRamakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R. Electrospun nanofibers: solving global issues. Materials Today. 2006; 9:40–50spa
dc.relation.referencesSánchez-Cepeda A, et al. “Preparation and Characterization of Electrospun Polymeric Membranes of Polycaprolactone and Chitosan for Controlled Release of Thiamine Chlorhydrate”. Ciencia en Desarrollo. 2016;7(2):133-151spa
dc.relation.referencesTong Hw, Zhang X, Wang M. "A New Nanofiber Fabrication Technique Based on Coaxial Electrohilado". Mater Lett. 2012;66(1):257-260spa
dc.rightsOrinoquia - 2019spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/431spa
dc.titleFabricación de nanofibras de TiO2/ZnO para aplicaciones de almacenamiento de energíaspa
dc.title.translatedFabrication of TiO2/ZnO nanofibers for energy storage applicationseng
dc.typeArtículo de revistaspa
dc.typeJournal Articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.localSección Artículosspa
dc.type.localSección Articleseng
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication

Archivos