Publicación:
Desempeño productivo y fisiológico de juveniles de Piaractus brachypomus sometidos a restricción de alimento

dc.contributor.authorRodríguez, Lilianaspa
dc.contributor.authorLandines-Parra, Miguel A.spa
dc.date.accessioned2018-07-16 00:00:00
dc.date.accessioned2022-06-13T17:42:21Z
dc.date.available2018-07-16 00:00:00
dc.date.available2022-06-13T17:42:21Z
dc.date.issued2018-07-16
dc.description.abstractSe utilizaron 177 juveniles de Piaractus brachypomus, mantenidos durante 84 días en dos estanques asignados a dos tratamientos de alimentación: T1: diaria y T2: un día sí y un día no. Se realizaron colectas de sangre los días 1, 28, 42, 56, 70 y 84 de 7 animales por tratamiento para determinación de hematocrito, hemoglobina, proteína, glucosa, lactato, triglicéridos, colesterol, cortisol e insulina. Los animales fueron pesados, medidos y sacrificados para cálculo de índices hepatosomático (IHS), viscerosomático (IVS) y grasa visceral (IGV); al final del ensayo a los animales muestreados se les realizó análisis proximal y de energía en filete. El hematocrito presentó diferencias significativas entre tratamientos los días 56 y 84, siendo superior en T1 el día 56 e inferior el día 84. Excepto los días 1 y 42, en los que la hemoglobina fue superior en T1, no hubo diferencias significativas entre tratamientos. Para glucosa, insulina y lactato hubo diferencias significativas el día 28: las dos primeras fueron superiores en T1, mientras que el lactato lo fue en T2. La proteína aumentó significativamente en T1 el día 42, nivel que se mantuvo el día 56, disminuyendo el día 70 y manteniéndose así hasta el día 84. Para triglicéridos, colesterol y cortisol no hubo diferencias significativas entre tratamientos en ninguna de las colectas. Además, se presentaron diferencias significativas en peso los días 42 y 70, y en longitud el día 42, no existiendo diferencias entre tratamientos al final del ensayo. Para IHS e IVS hubo diferencias significativas el día 84, siendo superiores en T1, sin diferencias para IGV. La sobrevivencia fue 100% en ambos tratamientos. El análisis proximal y la energía del filete no presentaron diferencias entre tratamientos. Se concluye que la restricción alimenticia del 50% en el esquema alternado utilizado, no afectó la condición fisiológica de los animales, pues no se evidenció ningún daño metabólico importante, ni cambios en la composición del producto final.spa
dc.description.abstract177 juveniles of Piaractus brachypomus were kept during 84 days in two ponds. Each group was assigned one of the following treatments: T1: fed every day, and T2: fed every other day. Blood samples from 7 animals of each treatment were taken on days 1, 28, 42, 56, 70, and 84 to determine hematocrit, hemoglobin, glucose, lactate, protein, triglycerides, cholesterol, cortisol, and insulin. Fish were weighted, measured, and sacrificed to remove the liver, viscera, and visceral fat to calculate the hepatosomatic index (HSI), viscerosomatic index (VSI), and visceral fat index (VFI). At the end of the trial, the group of sampled animals were filleted to do the energy and proximal analysis. There were significant differences in hematocrit between treatments, on days 56 and 84, they were higher in T1 on day 56, and lower in T1 on day 84. On days 1 and 42, hemoglobin was higher in T1, there were no significant differences among treatments. There were significant differences in glucose, insulin and lactate on day 28; the first two were higher in T1, while lactate was higher in T2. Protein significantly increased in T1 on day 42, and was the same on day 56, then decreased on day 70, and remained stable until day 84. There were no significant differences between treatments in triglycerides, cholesterol, and cortisol during any of the sample times. There were significant differences in the weight on days 42 and 70, and in length on day 42, but there were no significant differences between treatments at the end of the test. There were significant differences in IHS and IVS on day 84, they were higher in T1. There were no differences in IGV. Survival was 100% in both treatments. There were no differences in energy and proximal analysis of the fillets between the treatments. We can conclude that a 50% food restriction in the alternated scheme did not affect the physiological condition of the animals because there was not any significant metabolic damage or changes in the composition of the final product.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.22579/20112629.480
dc.identifier.eissn2011-2629
dc.identifier.issn0121-3709
dc.identifier.urihttps://repositorio.unillanos.edu.co/handle/001/2693
dc.identifier.urlhttps://doi.org/10.22579/20112629.480
dc.language.isospaspa
dc.publisherUniversidad de los Llanosspa
dc.relation.bitstreamhttps://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/480/1061
dc.relation.citationeditionNúm. 1 , Año 2018spa
dc.relation.citationendpage67
dc.relation.citationissue1spa
dc.relation.citationstartpage57
dc.relation.citationvolume22spa
dc.relation.ispartofjournalOrinoquiaspa
dc.relation.referencesAbdel M, Khattab Y, Ahmad M, Shalaby A. 2006. Compensatory growth, feed utilization, whole-body composition, and hematological changes in starved juvenile Nile tilapia, Oreochromis niloticus (L.). Journal of Applied Aquaculture. 18(3):17-36.spa
dc.relation.referencesAbolfathi M, Hajimoradloo A, Ghorbani R, Zamani A. Compensatory growth in juvenile roach Rutilus caspicus: effect of starvation and re-feeding on growth and digestive surface area. J Fish Biol. 2012;81:1880-1890.spa
dc.relation.referencesAli M, Nicieza A, Wootton JR. Compensatory growth in fishes: a response to growth depression. Fish Fish. 2003;4:147-190.spa
dc.relation.referencesAOAC. 2012. Official Method of Analysis of the Association of Analytical Chemists 19 Edition, Association of Official Analytical Chemists. Washington, DC, USA, p. 1018.spa
dc.relation.referencesAzodi M, Ebrahimi E, Farhadian O, Mahboobi-Soofiani N, Morshedi V. Compensatory growth response of rainbow trout Oncorhynchus mykiss Walbaum following short starvation periods. Chin J Oceanol Limn. 2015;33(4):928-933.spa
dc.relation.referencesBarcellos L, Marqueze A, Trapp M, Quevedo R, Ferreira D. The effects of fasting on cortisol, blood glucose and liver and muscle glycogen in adult jundiá Rhamdia quelen. Aquaculture. 2010;300:231-236spa
dc.relation.referencesBlasco J, Fernández J, Gutiérrez J. Fasting and refeeding in carp, Cyprinus carpio L.: the mobilization of reserves and plasma metabolite and hormone variations. J Comp Physiol. 1992;162(B):539-546spa
dc.relation.referencesCaruso G, Denaro MG, Caruso R, Mancari F, Genovese L, Maricchiolo. Response to short term starvation of growth, haematological, biochemical and non-specific immune parameters in European sea bass (Dicentrarchus labrax) and blackspot sea bream (Pagellus bogaraveo). Mar Environ Res. 2011;72:46-52.spa
dc.relation.referencesCho S. Compensatory Growth of Juvenile Flounder Paralichthys olivaceus L. and Changes in Biochemical Composition and Body Condition Indices during Starvation and after Refeeding in Winter Season. J World Aquacult Soc. 2005;36(4):508-514.spa
dc.relation.referencesCho S, Lee S, Park B, Ji S. Compensatory growth of juvenile Olive Flounder, Paralichthys olivaceus L., and changes in proximate composition and body condition indexes during fasting and after refeeding in summer season. J World Aquacult Soc. 2006;37(2):168-174.spa
dc.relation.referencesEl Sayed AL, Martínez-Llorens S, Moñino AV, Cerda M, Tomás-Vidal A. Effects of weekly feeding frequency and previous ration restriction on the compensatory growth and body composition of Nile tilapia fingerlings. Egypt J Aquat Res. 2016;42:357-363.spa
dc.relation.referencesEngelhardt W, Breves, G. 2006. Fisiología veterinaria. Editorial Acribia. 683p.spa
dc.relation.referencesEroldoğan OT, Kumlu M, Kiris GA, Sezer B. Compensatory growth response of Sparus aurata following different starvation and refeeding protocols. Aquacult Nutr. 2006;12:203-210.spa
dc.relation.referencesFigueiredo-Garutti M, Navarro I, Capilla E, Souza R, Moraes G, Gutiérrez J, Vicentini-Paulino M. Metabolic changes in Brycon cephalus (Teleostei, Characidae) during post-feeding and fasting. Comp Biochem Physiol A. 2002;132:467-476.spa
dc.relation.referencesHemre GI, Lie O, Lambertsen G, Sundby A. Dietary carbohydrate utilization in cod (Gadus morhua). Hormonal response of insulin, glucagon and glucagon-like peptide to diet and starvation. Comp Biochem Physiol A. 1990;97:41-44.spa
dc.relation.referencesHoulihan D, Boujard T, Jobling M. 2001. Food intake in fish. Oxford, UK: Blackwell Science; 1st edition. 40 p.spa
dc.relation.referencesHung S, Liu W, Li H, Storebakken T, Cui Y. Effect of starvation on some morphological and biochemical parameters in white sturgeon, Acipenser transmontanus. Aquaculture. 1997;151:357-363.spa
dc.relation.referencesJohansen KA, Overturf K. Alterations in expression of genes associated with muscle metabolism and growth during nutritional restriction and refeeding in rainbow trout. Comp Biochem Physiol B. 2006;144:119-127.spa
dc.relation.referencesLagardère JP, Bégout ML, Claireaux G. 1998. Advances in invertebrates and fish telemetry. Kluwer Academic Publishiers. Belgium, 363 p.spa
dc.relation.referencesMacKenzie D, VanPutte C, Leiner K. Nutrient regulation of endocrine function in fish. Aquaculture. 1998;161:3-25.spa
dc.relation.referencesMalpica A, Ramírez JA, Torres A. Evaluación de la restricción alimenticia sobre el crecimiento compensatorio en alevinos de cachama blanca (Piaractus brachypomus). Rev Colombiana Cienc Anim. 2014;7:59-74.spa
dc.relation.referencesMohanta KN, Rath SC, Nayak KC, Pradhan C, Mohanty K, Giri SS. 2016. Effect or restricted feeding and refeeding on compensatory growth, nutrient utilization and gain, production performance and whole body composition of carp cultured in earthen pond. Aquaculture Nutrition. In press, early view.spa
dc.relation.referencesMohanty RK. Effects of feed restriction on compensatory growth performance of Indian major carps in a carp-prawn polyculture system: a response to growth depression. Aquaculture Nutrition 2015;21:464-473.spa
dc.relation.referencesMontserrat N, Gómez P, Bellini G, Capilla E, Pérez J, Navarro I, Gutiérrez J. Distinct role of insulin and IGF-I and its receptors in white skeletal muscle during the compensatory growth of Gilthead Sea bream (Sparus aurata). Aquaculture. 2007;267:188-198.spa
dc.relation.referencesMorales AE, Pérez A, Hidalgo MC, Abellan E, Cardenete G. Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comp Biochem Physiol C. 2004;139:153-161.spa
dc.relation.referencesOh SY, Noh CH, Cho SH. Effect of restricted feeding regimes on compensatory growth and body composition of red sea bream, Pagrus major. J World Aquacult Soc. 2007;38(3):443-449.spa
dc.relation.referencesPérez-Jiménez A, Guedes MJ, Morales AE, Oliva A. Metabolic responses to short starvation and refeeding in Dicentrarchus labrax. Effect of dietary composition. Aquaculture. 2007;265:325-335.spa
dc.relation.referencesPottinger T, Rand-Weaver M, Sumpter, J. Overwinter fasting and re-feeding in rainbow trout: plasma growth hormone and cortisol levels in relation to energy mobilization. Comp Biochem Physiol B. 2003;136:403-417.spa
dc.relation.referencesPower D, Melo J, Santos C. The effect of food deprivation and refeeding on the liver, thyroid hormones and transthyretin in sea bream. J Fish Biol. 2000;56:374-387.spa
dc.relation.referencesReigh R, Williams MB, Jacob BJ. Influence of repetitive periods of fasting and satiation feeding on growth and production characteristics of channel catfish, Ictalurus punctatus. Aquaculture. 2006;254:506-516.spa
dc.relation.referencesRiaño FY, Landines MA, Díaz GJ. Efecto de la restricción alimenticia y la realimentación sobre la composición del músculo blanco de Piaractus brachypomus. Rev Med Vet Zoot. 2011;58(2):84-98.spa
dc.relation.referencesRios F, Oba E, Fernandes M, Kalinin A, Rantin F. Erythrocyte senescence and haematological changes induced by starvation in the neotropical fish traíra, Hoplias malabaricus (Characiformes, Erythrinidae). Comp Biochem Physiol A. 2005;140:281-287.spa
dc.relation.referencesRodríguez L, Landines MA. Evaluación de la restricción alimenticia sobre el desempeño productivo y fisiológico en juveniles de cachama blanca, Piaractus brachypomus, en condiciones de laboratorio. Rev Med Vet Zoot. 2011;58(3):141-155.spa
dc.relation.referencesRossi A, Cazenavea J, Bacchetta C, Campana M, Parma MJ. Physiological and metabolic adjustments of Hoplosternum littorale (Teleostei, Callichthyidae) during starvation. Ecol Indic. 2015;56:161-170.spa
dc.relation.referencesSmall B. Effect of fasting on nychthemeral concentrations of plasma growth hormone (GH), insulin-like growth factor I (IGF-I), and cortisol in channel catfish (Ictalurus punctatus). Comp Biochem Physiol B. 2005;142:217-223.spa
dc.relation.referencesSoengas JL, Strong EF, Fuentes J, Veira JAR, Andrés MD. Food deprivation and refeeding in Atlantic salmon, Salmo salar: effects on brain and liver carbohydrate and ketone bodies metabolism. Fish Physiol Biochem. 1996;15(6):491-511.spa
dc.relation.referencesSoengas JL, Aldegunde M. Energy metabolism of fish brain. Comparative Comp Biochem Physiol B. 2002;131(3):271-296spa
dc.relation.referencesTakei Y, Loretz C. 2006. Endocrinology. En: Evans D, Claiborne J, editors. The physiology of fishes 3rd ed. CRC Press. 601 p.spa
dc.relation.referencesTurano MJ, Borski RJ, Daniels HV. Effects of cyclic feeding on compensatory growth of hybrid striped bass (Morone chrysops x M. saxitilis) foodfish and water quality in production ponds. Aquacult Res. 2008;39:1514-1523.spa
dc.relation.referencesUrbinati E, Jiménez S, Susumo L. Short-term cycles of feed deprivation and refeeding promote full compensatory growth in the Amazon fish matrinxã (Brycon amazonicus). Aquaculture. 2014;433:430-433.spa
dc.relation.referencesWang T, Hung C, Randall DJ. The comparative physiology of food deprivation: From feast to famine. Annu Rev Physiol. 2006;68:223-251.spa
dc.relation.referencesXiao JX, Zhou F, Yin N, Zhou J, Gao S, Li H, Shao QJ, Xu JZ. Compensatory growth of juvenile black sea bream, Acanthopagrus schlegelii with cyclical feed deprivation and refeeding. Aquacult Res. 2013;44:1045-1057.spa
dc.relation.referencesYang G, Ziwei W, Jun-Wook H, Jeong-Yeol L. Body composition and compensatory growth in Nile tilapia Oreochromis niloticus under different feeding intervals. Chin J Oceanol Limn. 2015;33(4): 945-956.spa
dc.relation.referencesZamudio JF, Landines MA. Efecto de la restricción de alimento y posterior realimentación sobre algunas variables fisiológicas en yamú (Brycon amazonicus). Rev Med Vet Zoot. 2018;65(2): 154-171.spa
dc.relation.referencesZhu XM, Xie SQ, Lei W, Cui YB, Yang, YX, Wootton RJ. Compensatory growth in the chinese longsnout catfish, Leiocassis longirostris following feed deprivation: Temporal patterns in growth, nutrient deposition, feed intake and body composition. Aquaculture. 2005;248(1-4):307-314.spa
dc.rightsOrinoquia - 2019spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/480spa
dc.subjectAgroforestry systemeng
dc.subjectSAFeng
dc.subjectforesteng
dc.subjectgrasslandeng
dc.subjectindicator.eng
dc.subjectSistema agroforestalspa
dc.subjectSAFspa
dc.subjectbosquespa
dc.subjectpraderaspa
dc.subjectindicadorspa
dc.titleDesempeño productivo y fisiológico de juveniles de Piaractus brachypomus sometidos a restricción de alimentospa
dc.title.translatedProductive and Physiological Performance of Juveniles of Piaractus brachypomus Subjected to Food Restrictioneng
dc.typeArtículo de revistaspa
dc.typeJournal Articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.localSección Ciencias agrariasspa
dc.type.localSección Agricultural scienceseng
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication

Archivos