SACHA INCHI (*Plukenetia volubilis*), POSIBLE ALTERNATIVA PRODUCTIVA PARA PIEDEMONTE LLANERO EN EL DEPARTAMENTO DEL META

CESAR AUGUSTO RANGEL MORENO

UNIVERSIDAD DE LOS LLANOS
FACULTAD DE CIENCIAS AGROPECUARIAS Y RECURSOS NATURALES
PROGRAMA INGENIERÍA AGRONÓMICA
VILLAVICENCIO
2012
SACHA INCHI (*Plukenetia volubilis*), POSIBLE ALTERNATIVA PRODUCTIVA PARA PIEDEMONTE LLANERO EN EL DEPARTAMENTO DEL META

CESAR AUGUSTO RANGEL MORENO

Trabajo (monografía) presentado como requisito para optar por el título de INGENIERO AGRONOMO

I.A. CONSTANZA YUNDA

Directora

Universidad de los Llanos

UNIVERSIDAD DE LOS LLANOS
FACULTAD DE CIENCIAS AGROPECUARIAS Y RECURSOS NATURALES
PROGRAMA INGENIERÍA AGRONÓMICA
VILLAVICENCIO
2012
PERSONAL DIRECTIVO

OSCAR DOMINGUEZ
Rector

Vicerrector Académico

Secretaría General

Decano Facultad de Ciencias Agropecuarias y Recursos Naturales

Director Escuela de Ciencias Agrícolas
El director de la monografía y los jurados examinadores, no serán responsables de las ideas emitidas por los autores del mismo. (Artículo 24, Resolución 04 de 1994).
Nota de aceptación

Director

Villavicencio, _____ de 2012
DEDICATORIA

Este logro también es de mi madre, mi abuela, demás familiares y amigos, que a lo largo de mi carrera universitaria, me brindaron su apoyo incondicional. Gracias a la colaboración de cada uno de ellos, culmino satisfactoriamente mis estudios ya que su apoyo fue siempre vital en la ejecución y cumplimiento de cada uno de mis objetivos personales.
AGRADECIMIENTOS

Primero que todo le doy gracias a Dios por haberme regalado la oportunidad de llegar a ser profesional, de tener tan valiosa familia y rodearme de tan queridas personas, segundo agradecerle a mi familia por siempre brindarme el apoyo necesario y nunca desfallecer ante mis derrotas, por siempre encontrar en ellos un consejo y haber formado en mí una persona con responsabilidad y principios, por último quiero agradecer a mis amigos que siempre me ayudaron a salir de malos momentos y nunca me dieron la espalda en mis deberes académicos y personales.
CONTENIDO

pág.

INTRODUCCION ...10

1. OBJETIVOS ..12

1.1 OBJETIVO GENERAL ..12

1.2 OBJETIVOS ESPECÍFICOS ..12

2. MARCO TEORICO DE EL SACHA INCHI Plukenetia volubilis 13

2.1. CLASIFICACION TAXONOMICA ..13

Centro de origen y distribucion ..13

Antecedentes importantes de la especie ..13

Taxonomía ..14

Nombre común ..14

Sinonimia ..15

2.2 MORFOLOGÍA DE LA PLANTA ...15

2.3 CARACTERÍSTICAS FISICOQUÍMICAS DE LA SEMILLA DE SACHA INCHI

Aceite de sacha inchi (Plukenetia volubilis) ..17

2.4 IMPORTANCIA DEL SACHA INCHI (Plukenetia volubilis)18

Importancia económica ...18

Importancia farmacológica ...20

Importancia cosmetológica ...20

2.5 CULTIVO DE SACHA INCHI (PLUKENETIA VOLUBILIS)

Requerimientos edafoclimaticos ...21

Sistemas de Propagación ..23
LISTA DE TABLAS

Tabla 1. Contenido de nutrientes y Composición de ácidos grasos de varias semillas oleaginosas utilizadas para la producción de aceites .. 17

Tabla 2. Costos de establecimiento, mantenimiento, cosecha y poscosecha para cuatro años de sacha inchi .. 18

Tabla 3. Valor de la semilla de sacha inchi y sus derivados, dependiendo del nivel de transformación en que se encuentre para el año 2012 .. 18

Tabla 4. Costos de tutores por hectárea manejando distintos sistemas 25

Tabla 5. Comparación del método de extracción mecánica utilizada en el sacha inchi y el método de extracción con solvente ... 35

Tabla 6. Importaciones de aceites por país 2006 (Ton/año) 38

Tabla 7. Evolución de las exportaciones peruanas de aceite de sacha inchi, 2004-2010 ... 40

Tabla 8. Destino de las exportaciones peruanas de aceite de sacha inchi, 2007 ... 40

Tabla 9. Cultivo de sacha inchi (*Plukenetia volubilis*) en Colombia 42

Tabla 10. Rentabilidad del cultivo para cuatro años de almendra negra de sacha inchi por hectárea .. 54
LISTA DE FIGURAS

Figura 1. Planta de sacha inchi ... 15
Figura 2. Disposición del sacha inchi .. 15
Figura 3: Floración del sacha inchi ... 16
Figura 4: Frutos del sacha inchi .. 16
Figura 5: Labial de sacha inchi ... 21
Figura 6: Aceite corporal de sacha inchi 21
Figura 7: Sacha inchi en tutor muerto 24
Figura 8: Sacha inchi para siembra indirecta 28
Figura 9: Sacha inchi en almácigos ... 28
Figura 10: Sacha inchi asociada con yuca 31
Figura 11: Raíz atacada por complejo fusarium sp y Meloidogyne spp ... 33
Figura 12: Maquina desencapsuladora 34
Figura 13: Maquina descascaradora ... 34
Figura 14: Equipo extractor de aceite en frío 35
Figura 15: Aceite extraído de la almendra 35
Figura 16: aceite de sacha inchi .. 46
Figura 17: sacha inchi con queso .. 46
Figura 18: jabón de sacha inchi .. 46
Figura 19: almendra de sacha inchi con Aji 46
Figura 20: ubicación del piedemonte 47
La siguiente monografía realiza un análisis de potencialidad sobre el sacha inchi *Plukenetia volubilis* como posible alternativa productiva para las condiciones del piedemonte llanero, departamento del Meta, por medio de una ardua recopilación de información basada en libros, investigaciones y relatos de personas con experiencia en el sacha inchi *Plukenetia volubilis*, tanto en Colombia como en el Perú donde se encuentran las plantaciones más extensas, antiguas y tecnificadas de esta especie. El principal objetivo de esta recopilación literaria de sacha inchi *Plukenetia volubilis* es realizar un análisis comparativo de la potencialidad de este como alternativa productiva a las condiciones agroclimáticas y socioeconómicas ofertadas por el piedemonte llanero para determinar la viabilidad de este cultivo en el departamento del Meta.

Inicialmente se realizara una descripción generalizada de lo que es la especie *Plukenetia volubilis*, su origen, clasificación botánica, morfología, características fenológicas, requerimientos edafoclimáticos, aspectos agronómicos, procesamiento, industrialización y mercados. El Sacha Inchi (*Plukenetia volubilis*) por ser una planta nativa originaria de la Amazonía que crece de forma silvestre, prospera en casi todo tipo de suelos y no soporta condiciones extremas de sequía o de humedad, las plagas y las enfermedades que se le han detectado causándole daño son pocas aunque son altamente susceptibles a nematodo del nudo de la raíz *Meloidogyne sp* y se reportan daños considerables por *Fusarium sp* en estado de plántula y en plantas con daños por *Meloidogyne sp*. Es una planta que requiere de tutorado ya sea muerto o preferiblemente vivo para mitigar el daño ambiental, su producción inicia entre los 8 y 10 meses después de la siembra, obteniendo su pico de producción a partir del cuarto año hasta más o menos el decimo año que es cuando termina su vida productiva.

También se realizara una identificación de las condiciones agroecológicas y socioeconómicas más relevantes del piedemonte llanero, que nos aportan la mayor cantidad de elementos sobre la oferta que le brinda esta subregión al cultivo de sacha inchi *Plukenetia volubilis*, en factores como suelos, clima, infraestructuras y recursos humanos. Ya con esta información se realiza un análisis comparativo entre los requerimientos agroclimáticos y tecnológicos del Sacha inchi (*Plukenetia volubilis*) como sistema productivo frente a las condiciones ofertadas por el piedemonte llanero, donde se establece, mediante una matriz DOFA, las principales oportunidades y fortalezas de esta especie como cultivo a estas condiciones, encontrando en sus grandes beneficios como alimento y su cercanía a la capital de la república, lo convierte así en una alternativa viable y rentable para la agricultura en el departamento del Meta. Sin embargo se desconocen datos reales de su comportamiento agronómico y la adaptabilidad tanto social como ambiental, que lo hacen un tema interesante y para discutir a continuación en la presente monografía.
ABSTRACT

The below monograph is an analysis of potential over the Sacha Inchi Plukenetia volubilis as an alternative productive conditions piedmont plains of Meta department, through an arduous collection of information based on books, research and stories of people with experience Sacha Inchi Plukenetia volubilis, both in Colombia and in Peru where the largest plantations, ancient and technologically advanced of the species. The main objective of this literary collection Sacha Inchi Plukenetia volubilis is a comparative analysis of the potential of this as a productive alternative to the agroclimatic conditions and socio-economic offer and the piedmont plains to determine the viability of this crop in the department of Meta.

Initially perform a generalized description of what the species Plukenetia volubilis, origin, botanical classification, morphology, phenological traits, edaphoclimatic requirements, agronomic, processing, manufacturing and markets. The Sacha Inchi (Plukenetia volubilis) for being a native plant native to the Amazon that grows wild, thrives in almost any soil and cannot stand extreme conditions of drought or moisture, pests and diseases that have been detected causing damage but few are highly susceptible to nematode root knot Meloidogyne sp and reported considerable damage by Fusarium sp in the seedling and plants damaged by Meloidogyne sp. It is a plant that requires staking either dead or alive preferably to mitigate environmental damage, production begins between 8 and 10 months after planting, obtaining peak production from the fourth year until about the tenth year which is the end its life.

Also conduct an identification of agroecological and socioeconomic conditions most relevant from the foothills, we provide the largest number of items on offer that gives this subregion to the cultivation of Sacha Inchi Plukenetia volubilis, on factors such as soil, climate, infrastructure and human resources. Since this information is made a comparative analysis of agroclimatic and technological requirements of Sacha Inchi (Plukenetia volubilis) as a productive system against the conditions offered by the piedmont plains, which provides, through a SWOT matrix, the main opportunities and strengths this species as a crop to these conditions, finding in its great benefits such as food and its proximity to the capital of the republic, which thus becomes a viable and profitable agriculture in the department of Meta. No real data is unknown clutch of their agronomic performance and adaptability both social and environmental, that make it an interesting topic to discuss later in this paper.
INTRODUCCION

El Sacha Inchi (*Plukenetia volúbilis*) es una planta nativa originaria de la Amazonía que crece de forma silvestre, prospera en casi todo tipo de suelos, no soporta condiciones extremas de sequía o de humedad, requiere para su normal desarrollo una altitud de 100 a 1.500 msnm, así como precipitaciones que estén entre los 750 a 2800 mm por año, la temperatura puede oscilar entre 12° a 35°C.\(^2\) muy similares a las condiciones agroclimatológicas que ofrece la zona de Piedemonte Llanero, donde se encuentran precipitaciones que superan los 2500 mm/ano, temperatura promedio de 26°C, altitudes entre los 200 y 1800 msnm, así como recurso humano de descendencia agrícola, dispuestos y acostumbrados a trabajar la tierra de forma limpia y segura para conservar sus recursos naturales.

Aunque el potencial de este proyecto se enfoca principalmente a la comercialización de este producto fuera del país, el mercado interno puede ser un punto de partida considerable, teniendo en cuenta que Colombia es el principal importador de este producto, aunque el departamento del Meta no se caracteriza por ser un departamento con hábitos y costumbres alimenticias sanas, puede ser importante la comercialización dentro de su capital Villavicencio, pero se debe aprovechar más su ubicación y cercanía con la ciudad de Bogotá D.C. donde se encuentra el centro de acopio más grande e importante de Colombia y el mayor número de pobladores reunidos del país, lo que puede facilitar su comercialización dentro y fuera de Colombia, comparado con otras zonas que tendrían mayores dificultades para producir y desplazar un producto hasta un punto potencial donde pueda ser comercializado de igual forma dentro y fuera del país.

La semilla de Sacha Inchi (*Plukenetia volúbilis*) es la fuente natural más rica en contenido de aceite funcional tipo omega, comparado con los aportados por otras especies como la Soya (*Glycine max*), el girasol (*Helianthus annus L*), la oliva (*Olea europea*), el maní (*Arachis hypogaea*), entre otras, que son las fuentes de aceite funcionales más utilizadas actualmente en el mundo. El aceite del Sacha Inchi (*Plukenetia volúbilis*) posee un elevado nivel de ácidos grasos insaturados, llegando según Proamazonia, hasta un 93.6%; al igual que de polisaturados, que en promedio está compuesto de 48.6% de ácido graso esencial alfa linoleico (Omega 3). 36.8% de ácido graso esencial linoleico (Omega 6) y 8.28% de ácido oleico (Omega 9) y tiene el más bajo contenido de ácidos grasos saturados entre los aceites comerciales con apenas un 6.39%, compuesto de un 3.85% de palmitico y 2.54% de esteárico.\(^1\) Por su naturaleza y proceso de extracción, es un aceite de alta calidad para la alimentación, la salud y la industria cosmetológica, por ser extraído en frío, conserva todas sus características fisicoquímicas y organolépticas que lo hacen tan especial, de ahí que el valor para adquirir este

producto sea tan elevado y de escasa adquisición.

Es por esta razón que se realiza en la presente monografía un análisis comparativo entre los requerimientos edafoclimáticos y sociales requeridos por el cultivo, frente a las condiciones encontradas en el piedemonte llanero del departamento del Meta, así como la viabilidad que este cultivo como alternativa productiva puede brindar a esta subregión, teniendo en cuenta los pro y contra que podría tener el sacha inchi *plukenetia volubilis L* en el piedemonte llanero.
OBJETIVOS

Objetivo general:

Analizar el Sacha Inchi (*Plukenetia volubilis*), como posible alternativa productiva para el Piedemonte llanero en el departamento del Meta

Objetivos específicos:

- Realizar una revisión actualizada del estado del arte sobre el sacha inchi (*Plukenetia volubilis*), y de experiencias nacionales de productores que vienen trabajando con esta especie.
- Identificar zonas del piedemonte llanero donde se encuentran las condiciones agroambientales apropiadas para la producción de sacha inchi (*Plukenetia volubilis*) como una nueva alternativa productiva.
- Realizar un análisis del mercado nacional e internacional de aceite de sacha inchi (*Plukenetia volubilis*) y subproductos de acuerdo con los diferentes usos.
2. MARCO TEORICO DEL SACHA INCHI *Plukenetia volubilis*

2.1 CLASIFICACION TAXONOMICA

Centro de origen y distribución

Plukenetia es un género de plantas tropicales, comprende 31 especies encontradas en África, América y Asia; pertenece a la familia de las Euforbiáceas la cual está distribuida prácticamente por todo el mundo, constituida por 280 géneros con 8000 especies.³ La especie *Plukenetia volubilis* L. es una planta nativa de la Amazonía Peruana descrita por primera vez, como especie, en el año 1753 por el Naturalista Linneo, de ahí su nombre científico *Plukenetia volubilis* L. Su área de distribución se extiende desde las Antillas menores, Surinam y el sector noroeste de la cuenca amazónica en Venezuela y Colombia hasta Ecuador, Perú, Bolivia y Brasil.⁴

Se han encontrado registros de su origen en Perú en las culturas Incas y Pre-incas desde hace más de 3,000 años, convirtiéndose desde entonces en parte de la dieta alimenticia y medicina tradicional de estas tribus. La planta es representada en cerámicas encontrada enterradas en tumbas pre-Incas así como también Incas, demostrando la mística milenaria del cultivo de sacha inchi *Plukenetia volubilis* como fuente de nutrición. Nativos de la región han conocido acerca de Sacha Inchi durante miles de años y se ha mantenido en la dieta alimenticia de generaciones peruanas durante siglos.

En Colombia podemos encontrar esta especie en estado silvestre, principalmente y en mayor cantidad poblacional en diversos lugares de la Orino-Amazonia y en el Pacífico, lugares donde las condiciones ambientales favorecen las necesidades de la planta.⁵

Antecedentes importantes de la especie.

En 1.980 la Universidad de Cornell - USA hace investigaciones del grano de Sacha Inchi y a partir de 1.984 se desperta en Perú el interés en el cultivo llegando así al siguiente año a realizar una recolección de frutos, la identificación de zonas productoras, la realización de análisis bromatológicos, de calidad y se promueve la captación de la inversión privada para el cultivo y la industria del Sacha Inchi.

Plukenetia volubilis.

Desde enero del 2001 la Empresa Agroindustrias Amazónicas, desarrolla el Proyecto Omega para fomentar el Cultivo e industria del Sacha Inchi en el Perú, es así cuando en Enero del 2004 la certificadora internacional SKAL aprobó los requerimientos de calidad del Sacha Inchi como producto orgánico y en Junio de ese mismo año en la feria de aceites en Francia es reconocido como el mejor aceite de grano del mundo. En la actualidad el sacha inchi Plukenetia volubilis L se encuentra en un periodo de expansión productiva, donde se ha convertido en un producto primordial en el mercado peruano e ingresando como alternativa productiva en países vecinos como Ecuador, Bolivia, Brasil y Colombia principalmente.

Taxonomía

Identificación taxonómica según el sistema de Clasificación de Adolph Engler

Reino: Plantae
Subreino: Fanerogamas
División: Angiospermae
Clase: Dicotyledoneae
Subclase: Archichlamydeae
Orden: Geraniales
Familia: Euphorbiaceae
Género: Plukenetia
Especie: volubilis Linneo
Nombre científico: Plukenetia volubilis L

Nombre común

La civilización chanka, una tribu de las más antiguas y conocida por ser rebelde y guerrera, fue conquistada por los incas, los cuales trasmitieron sus conocimientos sobre esta sorprendente planta a todo el resto del imperio y al mismo inca, es desde ahí donde se le comienza a conocer como nuez inca. Comúnmente la especie Plukenetia volubilis se le identifica con diferentes nombres y dependen de la zona, región, departamento o país en que se encuentre. En el Perú se la conoce desde siglos atrás bajo los nombres de Sacha Inchi, término quechua que significa Maní del monte o silvestre; Amui, término utilizado por las tribus aborígenes de la Amazonia; Sachinchí, Maní del monte, Maní del inca, maní estrella, sacha

mani, Inca peanut, Amauebe, amui-o (huitoto), sacha inchic, sacha yachi, Sacha yuchi, sacha yuchiqui, yuchi (cashibo), sampannankii, suwaa y duce,mientras que en Colombia es conocida principalmente con los nombres de mani estrella y sacha inchi.

Sinonimia

Durante su historia, el sacha inchi ha pertenecido a distintos géneros en el ámbito taxonómico, y por ende ha contado con diferentes nombres científicos. La primera clasificación taxonómica que se le realizó a esta especie registrada fue realizada por el gran Carlos linneo, quien para el año de 1753 registra la especie *Plukenetia volubilis* L. siendo esta la primera clasificación encontrada de esta especie. Sin embargo, años después fue reclasificada por la nueva generación de botánicos, dándose diferentes nombres como: *Sajorium voluble* (L.) Baill. (1858), *Plukenetia peruviana* Müll. Arg. (1865), *Plukenetia macrostyla* Ule (1908 publ. 1909), *Fragariopsis paxii* Pittier (1929). Pero todos estos sin éxito, quedando aceptada por los botánicos a nivel mundial la clasificación realizada por Linneo, debido a lo completo de su trabajo y su coherencia en la clasificación.

2.2 MORFOLOGÍA DE LA PLANTA

El Sacha Inchi es un arbusto trepador o rastrero cuando se encuentra de forma silvestre. Cultivado se encuentra habitualmente en bordes de bosques secundarios, en cañaverales, sobre cercos vivos; puede llegar ser considerado una arvense en cultivos de plátano y perennes por la capacidad de trepar y amarrarse a las plantas de tal manera que tiende a invadirlas y ahogarlas.

![Figura 1. Planta de sacha inchi](http://higuera.unasudigital.info/pcr257)

![Figura 2. disposición de sacha inchi](http://hics.edu.co/mch02.htm)

El tallo es semilenoso y su altura promedio está entre 180 a 210 cm. Sus hojas son alternas, generalmente de color verde oscuro aunque en ocasiones el color de estas puede ser más verde claro dependiendo de la condición nutricional del suelo y condiciones ambientales donde se encuentre. La forma de la hoja es ovalada elíptica, con bordes aserrado o festoneado y pinnatinervias, de 9 a 16 cm de largo y de 6 a 10 cm de ancho, el ápice es puntiagudo y la base es plana o semiarrifiñonada. Es una planta hermafrodita de inflorescencia en racimo (figura 3), las flores masculinas son pequeñas y abundantes, se encuentran en la base del racimo y lateralmente, generalmente se puede observar de una a dos flores femeninas por racimo. Es una especie alogama, presenta un alto porcentaje de polinización cruzada.8

Figura 3: floración del sacha inchi Tomada de: sacha inchi manual
Figura 4: frutos del sacha inchi Tomada por LARREA

El fruto es una cápsula, dehiscente de color verde intenso que una vez esta maduro se torna de color marrón oscuro, llegan a medir de 3,5 a 4,5 cm. de diámetro generalmente con 4 lóbulos aristas (tetalobulados) dentro de los cuales se encuentran 4 semillas, algunos frutos pueden presentar 5, 6 o 7 lóbulos, con igual cantidad de semillas. La semilla es de forma elipsoidal u ovalada de color marrón oscuro, abultadas en el centro y aplastadas en los bordes, se encuentran dentro de los lóbulos de las capsulas, miden entre 0.7 a 0.8 cm de espesor y tienen de 1.5 a 2.0 cm de diámetro, el peso de la semillas varía de 0.8 a 1.4 gramos; allí se encuentran los cotiledones a manera de almendras, que es la materia prima para la extracción del aceite, cubiertas de una fina película blanquecina que cubre a la almendra.8

2.3 CARACTERÍSTICAS FISICOQUÍMICAS DE LA SEMILLA DE SACHA INCHI

Aceite de Sacha Inchi (*plukenetia volubilis*)

Análisis realizados en Estados Unidos por Hazen e y Stoewsand, para la universidad de CORNELL en el año 1980, mostraron que el Sacha Inchi presentaba un elevado nivel de aceite (54%) y un contenido relativamente alto de proteínas (33%). Por los estudios realizados tanto en Perú como en Estados Unidos (Instituto de Ciencia de los Alimentos de la Universidad de CORNELL) y en otros países, se sabe que este aceite resulta ser el mejor entre de los aceites vegetales utilizados para el consumo humano, su rica composición de ácidos grasos demuestra su alta calidad, incluidos los ácidos grasos polinsaturados Omega, en alto contenido cuando se compara con otras semillas oleaginosas utilizadas para la extracción de aceites para el consumo humano como se puede observar en la tabla 1. El aceite de la semilla del Sacha Inchi tiene un alto contenido del ácido graso linolénico, el más valioso de los aceites Omega presentes en la composición de las grasas.9

Tabla 1. Contenido de nutrientes y Composición de ácidos grasos de varias semillas oleaginosas utilizadas para la producción de aceites

<table>
<thead>
<tr>
<th>Ácidos Grasos</th>
<th>SEMILLAS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sacha Inchi</td>
<td>Soya</td>
</tr>
<tr>
<td>Aceite total (%)</td>
<td>54</td>
<td>19</td>
</tr>
<tr>
<td>Saturados</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mirístico</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Palmitíco</td>
<td>4.5</td>
<td>10.5</td>
</tr>
<tr>
<td>Esteárico</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>7.7</td>
<td>13.7</td>
</tr>
<tr>
<td>Insaturados</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palmitoleico</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Oleico</td>
<td>9.6</td>
<td>22.3</td>
</tr>
<tr>
<td>Linoleico</td>
<td>36.8</td>
<td>54.5</td>
</tr>
<tr>
<td>Linolenico</td>
<td>45.2</td>
<td>8.3</td>
</tr>
<tr>
<td>Gadoleico</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>91.6</td>
<td>85.1</td>
</tr>
</tbody>
</table>

Fuente: Hazen y Stoewsand, Cornell University Ithaca USA

En la grafica 1 se muestra el contenido de nutrientes y la composición de los ácidos grasos de varias semillas oleaginosas utilizadas para la producción de aceites para el consumo humano. Los análisis y estudios hechos sobre estas semillas

demuestran en todos los aspectos, la alta calidad y superioridad en un aceite rico en proteínas.¹⁰

Grafica 1. Comparación del porcentaje de grasa y proteína del sacha inchi frente a otras semillas oleaginosas.

Existen aceites que no han sido procesados a altas temperaturas ni contienen aditivos químicos para la extracción de su aceite, como es el caso del aceite de Sacha Inchi en su primera forma extractiva; y que por tanto, resultan beneficiosos para el organismo del ser humano por mantener intactas sus propiedades organolépticas y nutricionales. Este tipo de aceite debe consumirse de forma directa es decir directamente en cucharadas, en ensaladas, mezclarse con yogurt o leche, o también puede rociarse sobre comida previamente cocinada. Esta es la forma recomendada para consumir el producto en este estado de extracción.¹⁰

2.4 IMPORTANCIA DEL SACHA INCHI (*plukenetia volubilis*)

Importancia económica

El cultivo del sacha inchi es una actividad agroindustrial promisoria que requiere afianzarse con prácticas que garanticen la sostenibilidad del recurso y con ello, una oferta futura de suficiente volumen y calidad adecuada; es un cultivo con un alto potencial para el desarrollo rural de la Amazonía en el corto, mediano y largo;¹¹ es adaptable a cultivos asociados que permiten mantener ingresos antes del inicio de producción que bien podrían invertirse en el sostenimiento del mismo.

Esta alternativa productiva le brinda al agricultor una producción continua luego de iniciar su producción, aunque sus picos de cosecha dependen de las épocas de lluvia que se registren en la zona donde sea sembrado, la productividad de este cultivo es constante y tentadoramente rentable. El cultivo de sacha inchi le brinda al agricultor una rentabilidad hasta con una sola hectárea sembrada como se puede observar en la tabla 2, por lo que se convierte en una alternativa, no solo para grandes productores con el capital, sino también para aquellos pequeños agricultores que cuentan con pocos recursos.

<table>
<thead>
<tr>
<th>Tabla 2. Costos de establecimiento, mantenimiento, cosecha y poscosecha para cuatro años de sacha inchi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Año 1 (2011)</td>
</tr>
<tr>
<td>Adecuación</td>
</tr>
<tr>
<td>Mano de obra</td>
</tr>
<tr>
<td>Insumos</td>
</tr>
<tr>
<td>Administración</td>
</tr>
<tr>
<td>Otros costos</td>
</tr>
<tr>
<td>Costo de 1 ha</td>
</tr>
</tbody>
</table>

Fuente: Colombia Biocombustibles COLBIO 2011

Se podría decir que la rentabilidad en el cultivo de sacha inchi es elevada si se compara con otros cultivos perennes como los frutales en general, los forestales que pueden tardar hasta 20 años para generar rentabilidad e inclusive con demás oleaginosas como la soya o la palma africana que a pesar de tener áreas cultivadas más extensas en el mundo, no brindan una rentabilidad por hectárea como si lo hace el sacha inchi. Como ya se sabe, la producción de sacha inchi inicia antes del primer año de haber sido sembrado y su producción es ascendente hasta el cuarto año, donde se podría decir que llega a su punto más alto de producción y de esta forma se mantiene los 6 o 7 años siguientes, recuperando rápidamente la inversión realizada durante el establecimiento y ofreciendo una alta rentabilidad a los agricultores durante su ciclo productivo sin generar daños ambientales o destrucción de la biodiversidad donde sea establecida.12

El valor agregado que se le puede dar a la semilla de sacha inchi, puede llegar a generar para los agricultores un aumento considerable en sus ingresos anuales, ya que el producto aumenta de valor si se vende como almendra blanca, es decir sin cascara, y aun más si se vende como aceite ya extralado en frío como se puede observar en la tabla 3. Hay que recordar que de la semilla de sacha inchi no solo se puede obtener aceite rico en omegas 3, 6 y 9, también se obtiene la torta de sacha inchi que es el resultado de la extracción del aceite. Esta torta rica en proteinas, fibra y que conserva un mínimo porcentaje de su aceite, está siendo

comercializada, según agroincolsa s.a.s, para la elaboración de alimentos de consumo humano y animal. Las cantidades de torta que se obtienen tras la extracción de su aceite son bastantes, ya que por cada litro de aceite obtenido resultan 4 kilos de torta que en este momento se está introduciendo en el mercado nacional e internacional, compitiendo por calidad y precio con la torta de soya utilizada como base proteica en la alimentación bovina y de especies animales menores, incluyendo piscicultura.

Tabla 3. Valor de la semilla de sacha inchi y sus derivados, dependiendo del nivel de transformación en que se encuentre para el año 2012.

<table>
<thead>
<tr>
<th>PRESENTACIÓN</th>
<th>PRECIO</th>
<th>PRODUCCIÓN/AÑO</th>
<th>RENTABILIDAD/AÑO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almendras negras (kg)</td>
<td>$4.000</td>
<td>4.800 Kilos</td>
<td>$19.200.000</td>
</tr>
<tr>
<td>Almendradas blancas (kg)</td>
<td>$8.000</td>
<td>4.000 Kilos</td>
<td>$32.000.000</td>
</tr>
<tr>
<td>Aceite a granel (L)</td>
<td>$80.000</td>
<td>800 LitrosM</td>
<td>$64.000.000</td>
</tr>
<tr>
<td>Torta de sacha inchi (kg)</td>
<td>$1.500</td>
<td>3.200 Kilos</td>
<td>$4.800.000</td>
</tr>
</tbody>
</table>

Fuente: Agroincolsa S.A. 2012

Importancia farmacológica

El aceite de Sacha Inchi, siendo un producto natural, de un cultivo ecológico y contando con un proceso de extracción garantizado de prensado en frío, es un aceite de alta calidad para la alimentación y la salud humana, capaz de suplir los ácidos grasos esenciales como el omega 3 y 6 que nuestro organismo no puede sintetizar. Según la Universidad de Cornell (USA), los ácidos grasos esenciales Alfa Linoelénico (Omega 3) y Linoléico (Omega 6) al ser consumidos de forma directa por ser aplicados sobre las ensaladas, alimentos en general o en cucharadas, son absorbidos y asimilados por nuestro organismo, lo que favorece el incremento y la agilización de las diferentes funciones cerebrales que se encuentran estrechamente ligadas a la memoria, la inteligencia y el razonamiento, controlar y reducir el colesterol, intervienen en la formación del tejido nervioso (mielinización), del tejido ocular y de la estructura de las membranas celulares. Estos ácidos grasos intervienen así mismo en otras funciones importantes de manera indirecta, desde la regulación de la presión arterial, pasando por la función inmunitaria hasta la agregación de plaquetas, lo que lo convierte en un alimento no solo saludable sino que cumple también con funciones medicinales en la salud humana.

Importancia cosmetológica

En la actualidad existen empresas peruanas y multinacionales que, con el apoyo de importantes firmas extranjeras, han lanzado al mercado productos cosméticos.

basados en la semilla de sacha inchi. Es el caso de Rais Vida, empresa dedicada a la investigación y la fabricación de productos naturales, que ha lanzado al mercado una línea de productos con el nombre de Sayhsy, que combina las propiedades y los beneficios de productos como la maca, la hierba santa, el sacha inchi y el aloe andino, entre otros. La empresa Sederma Paris está desarrollando un producto similar, se trata de una de las más reconocidas empresas francesas, líder en la investigación y el desarrollo de principios activos para la industria cosmética, la empresa Kem's de peru, como se muestra en la figura 5, elabora productos de belleza y de aplicación corporal, así como empresas multinacionales como Yanbal, reconocida por toda América latina por sus productos e innovaciones encontró en el sacha inchi una alternativa para elaborar cremas y aceites como se puede observar en la imagen 6.

![Figura 5: labial de sacha inchi www.kemsperu.com/](image1)

![Figura 6: aceite corporal de sacha inchi http://yanbalanuba.com](image2)

2.5 CULTIVO DE SACHA INCHI (PLUKENETIA VOLUBILIS)

Requerimientos edafoclimaticos

Temperatura: por ser una especie amazónica las temperaturas ideales para su normal desarrollo es en promedio de 26 °C, aunque Crece y tiene buen comportamiento en temperaturas que estén entre los 10°C y 36°C, Las temperaturas muy altas y la poca disponibilidad de agua en el suelo se convierten

en un factor desfavorable para el cultivo ya que ocasionan la caída de flores y frutos pequeños principalmente los recién formados, aunque generalmente en verano es cuando se obtiene el mayor número de cápsulas, mientras que la producción en invierno es más reducida, pero esto se debe más a las horas de luz al día que a la temperatura. La humedad relativa de 78 % y temperatura media de 26 °C son los ideales no solo para el normal desarrollo de la planta sino también para evitar problemas fitosanitarios.16

Altitud: Se puede cultivar desde los 50 hasta los 2.100 metros de altitud, aunque los mejores rendimientos se están encontrando por debajo de los 800 msnm16.

Luz: A bajas intensidades de luz, la planta necesita de mayor número de días para completar su ciclo vegetativo; cuando la sombra es muy intensa la floración disminuye y por lo tanto la producción es menor.16

Agua: Es una planta que requiere de disponibilidad permanente de agua, para tener un crecimiento sostenido; siendo mejor si las lluvias se distribuyen en forma uniforme durante los 12 meses (850 a 1 000 mm). El riego es indispensable en los meses secos. Períodos relativamente prolongados de sequía o de baja temperatura, causan un crecimiento lento y dificultoso. El exceso de agua ocasiona daño a las plantas e incrementa el ataque por enfermedades.17

Suelo: Es una planta agronómicamente rústica de poca exigencia nutricional, tiene amplia adaptación a diferentes tipos de suelo, puede llegar a crecer en suelos con problemas de acides y altas concentraciones de aluminio aunque lo más adecuado es elegir los suelos que posibiliten su mejor desarrollo y productividad con pH entre 5.5 y 6.5. Los suelos donde mejor se adapta esta especie son los de textura media (franco-arcillo-arenosa, franco-arcillosa y franco-arenosa), con buen drenaje18, es decir, que no acumulen humedad ni se encharcan por mucho tiempo después de la lluvia, sino que eliminan el exceso de agua en forma rápida para evitar la aparición de enfermedades que afecten el cultivo, su topografía preferiblemente plana y con una pendiente no mayor a 35%.19

Drenaje: Necesita terrenos con drenaje adecuado, que eliminan el exceso de agua tanto a nivel superficial como profundo. Para un buen drenaje se debe considerar la textura del suelo, y ésta es importante para el desarrollo del cultivo.19

SISTEMAS DE PROPAGACIÓN

La propagación en el sacha inchi se puede realizar tanto de forma sexual como asexual, cada una con aspectos favorables y desfavorables como son:

Propagación sexual: es el sistema más utilizado y eficiente a la hora de propagar esta especie, encontrando un porcentaje de germinación que supera el 80% que es la principal ventaja que se tiene sobre la propagación asexual; además, los costos de este sistema de propagación son inferiores debido a que la mano de obra necesaria para realizar esta labor no requiere conocimientos significativos sobre el sistema y los jornales necesarios son inferiores a la propagación asexual. Sin embargo, es importante tener en cuenta ciertas recomendaciones a la hora de realizar la propagación del sacha inchi como es seleccionar previamente las semillas de frutos totalmente maduros que no se encuentren en el suelo y de plantas sanas, vigorosas, que hayan demostrado excelentes rendimientos y como mínimo lleven 6 meses en producción, para de esta forma buscar semillas totalmente desarrolladas que le brinde uniformidad de características al cultivo.

Propagación Asexual: El sistema de propagación asexual no ha tenido gran acogida por los agricultores tanto en Perú como en Colombia debido a su poco porcentaje de enraizamiento y costos, comparados con el sistema de semillas; Sin embargo, el instituto de investigación de la amazonia peruana IIAP realizó un ensayo con estacas de diferentes partes de la planta de sacha inchi, encontrando que el material que mejor resultado mostró fueron las estacas tomadas de la parte basal de la planta; pero aunque un gran avance investigativo en la propagación de esta especie, no llega a ser competitivas frente al sistema de propagación sexual. Para lo cual es importante la investigación por parte de las entidades estatales y privadas para de este modo permitir determinar si este sistema de propagación asexual puede llegar a aumentar su eficiencia y de este modo aprovechar las grandes ventajas que nos podría brindar este sistema que podrían ser: la trasferencia plena de características de la planta y la utilización de patrones que permitirían contrarrestar o mitigar un poco el daño causado por los organismos del suelo (fusarium sp y Meloidogyne spp) que son sus principales limitantes y serían problema al establecer sacha inchi en el piedemonte llanero, lo cual sería muy interesante y beneficioso para la región y el departamento del meta profundizar e investigar más a fondo sobre este tema.

El sacha inchi (plukenetia volubilis) como cultivo

El sacha inchi, por ser una especie nativa de la amazonia peruana requiere de ciertas condiciones y factores, para poder tener un desarrollo de forma adecuada y así convertirse en un cultivo productivo y rentable a su vez.

Preparación del terreno

La preparación del terreno se convierte en la primera condición requerida de adaptabilidad del sacha inchi como cultivo, ya que se debe tener conocimiento de cómo realizar esta labor, de tal forma que el sacha inchi se vea a gusto y pueda liberar todo su potencial productivo, se debe tener en cuenta que las principales limitantes de esta especie provienen del suelo, por lo que se deben seleccionar tierras sanas, que no cuenten con problemas de enfermedades o nematodos que puedan ser perjudiciales para la producción. La riqueza mineral y de materia orgánica es muy importante ya que, aunque no es un cultivo de muchos requerimientos nutricionales, la disponibilidad de estos en buena cantidad le permite un desarrollo más rápido y mejor para la planta, así como de frutos que es a lo que en últimas se busca. Contrario a lo que sucede con el agua, ya que aunque esta especie requiere buenas cantidades de agua, es susceptible a los encharcamientos, por lo que se debe manejar terrenos que drenen rápido o realizar canales que le permita la evacuación de agua del lote donde se encuentra establecida la plantación de sacha inchi.

Si se cuenta con suelos que tienen un nivel de compactación considerable que pueda comprometer el desarrollo radicular de las plantas, es posible realizar labores que permitan soltar un poco el suelo como pases de cincel o rastra, pero teniendo en cuenta que esta especie se desempeña mejor en un ambiente diverso en flora y fauna, por lo que la labranza mínima es lo ideal. Por ello la erradicación de arvenses debe realizarse de forma manual, siempre y cuando la agresividad de estas lo permitan y a su vez esta material vegetal cortado al ser dejado en el lote mejora los niveles de materia orgánica en el suelo, si las especies de arvenses con que se cuenta en el lote son de una alta agresividad y comprometen el desarrollo de la planta, ya sea por luz o por nutrientes, es necesario realizar aplicaciones de productos selectivos para reducir la incidencia de estas. La aplicación de correctivos es una labor que no se puede dejar pasar antes de la siembra, ya que la planta de sacha inchi libera su mejor potencial cuando el pH del suelo se encuentra entre 5.5 y 6.5, por lo cual la aplicación de correctivos es muy importante a la hora de sembrar el sacha inchi.

Tutorado

El tutorado es otra labor que se debe realizar antes de la siembra o trasplante del cultivo, ya que la elaboración y principalmente la instalación de los tutores puede llegar a perjudicar las plantas por pisadas o golpes. Existen dos formas para tutorar la planta de sacha inchi; puede ser con tutores muertos (figura 7) o vivos, dos sistemas muy distintos pero que le permiten al agricultor escoger cuál de estos se adapta más a las condiciones de su finca o lote donde se va a establecer el cultivo del sacha inchi.

Tutores muertos: Este sistema de tutorado le permite al agricultor establecer un mayor número de plantas por hectárea, ya que está diseñado para realizar plantaciones en un sistema de monocultivos como maracuyá (Passiflora edulis) y badea (Passiflora quadrangularis), especies conocidas en el piedemonte llanero del departamento del meta, por lo que ya se conoce las ventajas y desventajas de este sistema y lo que implica, no solo ambientalmente sino fitosanitariamente. Aunque su costo de instalación es elevado y poco recomendado por el daño que causa a los bosques de galería principalmente, buscando madera para establecer los tutores que sostendrán la plantación. Vale resaltar también que estos tutores muertos, que son instalados junto a las plantas y en igual cantidad por hectárea, tienen una durabilidad promedio de 3 a 4 años, siempre y cuando se haya colectado madera de calidad y realizado labores que le permita al agricultor obtener el máximo potencial de la madera, de lo contrario el promedio de durabilidad de este tutorado se reducirá.\(^\text{22}\)

Actualmente se cuenta en el mercado con postes de materiales amigables con el medio ambiente y con muchos más años de durabilidad que la madera, a pesar de tener un costo considerablemente elevado, llega a suplir la necesidad del cultivo durante todos sus 10 años de productividad y le permite al agricultor realizar la instalación del tutorado una sola vez, mientras que con la madera es necesario renovar 2 y hasta 3 veces los tutores de la plantación.\(^\text{22}\)

Esta labor es importante realizarla previo a la siembra cuando se va a realizar de forma directa al lote o antes del trasplante cuando se germina las plantas en vivero, este sistema de tutores muertos debe llevar dos líneas de alambre a diferentes

alturas en el poste o tutor, la distancia depende de la altura a la que se haya decidido dejar de poste, ya que la primer línea va en el extremo superior, y la segunda en el medio del primer alambre y el suelo que va a ser la que apoyara la planta en sus primeros guiados. Existen diferentes formas de tutorado como son: en T, en V invertida o de forma normal con un solo poste, permitiendo al agricultor adaptar el sistema que más le convenga dependiendo de las condiciones climáticas y factores como la pendiente o ondulaciones con que se pueda contar en lote, y de paso le permita realizar las labores de mantenimiento sin ningún problema.

Tutores vivos: este sistema de tutorado permite al agricultor realizar una labor más ecológica y ambiental, ya que no es necesario recurrir a la tala de árboles para establecer el tutorado de la plantación y aunque puede llegar a reducir la producción al agricultor por hectárea, los costos de la instalación del tutorado vivo son más bajos comparados con los tutores muertos, además le permite tanto mantener un equilibrio ambiental en el lote, como beneficiarse de estas plantas que pueden ser mejoradoras de las características del suelo, plantas poseedoras de controladores biológicos o repelente de plagas, productoras de semillas o frutos que tengan mercado y lleguen a generar algún ingreso económico alterno al agricultor o simplemente que a la hora de terminar con la plantación pueda venderse su madera.

En el piedemonte, especies como la *eritrixa sp* y el matarratón (*glicidica sepium*), pueden llegar a suplir las necesidades de sostenimiento del cultivo de sacha inchi, ya que son plantas de un rápido crecimiento y excelente anclaje capaz de sostener el peso de las plantas y el alambre sin sufrir alguna clase de volamento o daño, además sus hojas y ramas pueden ser utilizadas para la alimentación de animales menores o para la elaboración de compost, sin mencionar el porcentaje de nitrógeno que le aportan al suelo. Es importante podar continuamente las plantas que sirven como tutor, buscando reducir su área foliar y permitiendo la entrada de luz a las plantas de sacha inchi que son las que nos interesan productivamente, estos tutores vivos deben sembrarse dos meses antes del trasplante cuando la siembra es indirecta, mientras que si la siembra se va a realizar de forma directa, se debe realizar la siembra del tutor simultáneamente con las plantas de sacha inchi.

A pesar de que el método más recomendado ambientalmente sea el de un sistema de tutores vivos en toda la plantación, instalando el mismo número de tutores vivos que de plantas de sacha inchi, económicamente se ha demostrado que la unión de ambos sistemas, tanto de tutores vivos como de muertos, es la forma más apropiada de manejar esta necesidad del cultivo, ya que de este modo el número de plantas de sacha inchi se mantiene en 1.111 plantas por hectárea, instalando 2 tutores muertos por cada tutor vivo. De este modo se va a sembrar cada tutor vivo

a una distancia de 9 metros entre sitios y a 3 metros que será la línea de siembra que le seguirá, en medio de cada tutor vivo se instalarán los dos tutores muertos, el primero a 3 metros y el segundo a 6 metros, de este modo se suple la necesidad del cultivo mientras se mitiga de cierto modo el daño ambiental, se mantiene un poco el equilibrio entre plagas, se reduce la humedad en el cultivo, mejora la aireación, se baja la incidencia de patógenos aéreos, que son los principales problemas encontrados en una plantación con únicamente tutores vivos y que conociendo las condiciones agroclimáticas del piedemonte llanero, es un factor a tener en cuenta a la hora de sembrar el sacha inchi.

Se puede observar en la tabla anterior la diferencia económica que existe en los diferentes sistemas de tutorado, factor importante a la hora de decidir el sistema a implementar en la plantación. Analizando la tabla de puede ver que los sistemas más económicos son donde se encuentran plantas como tutores, ya que en estos sistemas los costos por mano de obra se reducen debido a que no hay que cortar o en el sistema mixto se cortaría un 33% menos, que serían aproximadamente 350 postes que se dejarían de talar. Los costos más elevados que encontramos en la tabla 4 son en donde se busca implementar el sacha inchi como monocultivo, causando no solo un daño ecológico, sino también elevando los costos de instalación, así como una mayor incidencia de plagas y enfermedades a cambio de mayor rentabilidad que en ultimas con las aplicaciones y controles que se le deben realizar al monocultivo, no debe ser tan rentable como se piensa; los sistemas donde se implementan postes de madera tienen una limitante a tener en cuenta a la hora de pensar en utilizarlos y es su renovación cada 2 o 3 años, ya que al ser de madera y encontrarse expuestos al aire libre es inevitable su descomposición, por lo que se debe pensar en que se va a tener que renovar 3 o hasta 4 veces todo el sistema de tutorado durante el ciclo productivo del sacha inchi, y aunque el sistema de tutores vivo cuenta con grandes beneficios también tiene sus cuidados, ya que para que este no interfiera con la producción es importante realizarle podas continuamente (45 ~ 60 días) evitando de este modo sombrio sobre las plantas de sacha inchi pero generando más gastos para el productor.

Tabla 4. Costos de tutores por hectárea manejando distintos sistemas

<table>
<thead>
<tr>
<th></th>
<th>tutor muerto</th>
<th>tutor vivo</th>
<th>tutor mixto</th>
<th>tutor plástico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costo % por sitio</td>
<td>$500</td>
<td>$295</td>
<td>$390</td>
<td>$3500</td>
</tr>
<tr>
<td>Costo por ha</td>
<td>$555.500</td>
<td>$327.745</td>
<td>$433.290</td>
<td>$3.888.500</td>
</tr>
<tr>
<td>Duración</td>
<td>2-3 años</td>
<td>10 años</td>
<td>2-3 años</td>
<td>10 – 12 años</td>
</tr>
<tr>
<td>Daño ambiental</td>
<td>Alto</td>
<td>Mínimo</td>
<td>medio</td>
<td>BAJO</td>
</tr>
<tr>
<td>Plantas por ha</td>
<td>1111</td>
<td>1111</td>
<td>1111</td>
<td>1111</td>
</tr>
<tr>
<td>Mantenimiento</td>
<td>Renovación</td>
<td>Podas cada 2 meses</td>
<td>Podas y renovación</td>
<td>ninguno</td>
</tr>
</tbody>
</table>

Una nueva posibilidad a implementar porque no en el piedemonte, que evitaría la tala indiscriminada y continua de madera para tutores, es la utilización de tutores plásticos reciclables, que no solamente tienen una vida útil de más de 10 años, sino que también son artículos más amigables con el medio ambiente por su rápida degradación. Este sistema que aunque es significativamente más costoso que cualquier otro sistema de tutorado, puede satisfacer la necesidad del cultivo durante toda su vida productiva, sin la necesidad de talar o podar como ocurre en los otros sistemas, que en últimas llegan a ser casi igual de costosos si se suman las labores durante los 10 años de producción.25

Siembra

Es muy importante tener en cuenta la llegada de las lluvias a la zona donde se realizará la siembra, ya que para el sacha inchi es muy importante contar con un suelo húmedo al momento de su germinación y crecimiento, pero sin encharcamientos que puedan pudrir la semillas o raíces de la planta. Aunque el piedemonte cuenta con precipitación durante más o menos 9 meses del año, la época más apropiada para realizar esta labor es entre los meses de abril y mayo, donde se garantizan lluvias constantes, que pueden llegar hasta los meses de octubre o noviembre.

Siembra directa: Consiste en realizar la siembra directamente en el lote preparado. Se recomienda que las semillas utilizadas en esta labor sean semillas jóvenes y colectadas de la planta o compradas en lugares reconocidos y certificados para realizar la venta de las semillas de esta especie. En el caso de semillas que tienen más de 60 días de recolectada, es necesario hacer una escarificación manual para promover la germinación en las semillas con testa gruesa. Antes de realizar la siembra se recomienda desinfectar las semillas, a fin de prevenir o controlar enfermedades fungosas que afectan la raíz de la planta.

Ya que cada kilo de semilla de sacha inchi cuenta con aproximadamente 1200 semillas, se podría decir que para cada hectárea se necesita un kilo pero ya que el porcentaje de germinación no es del 100%, se recomienda sembrar 2 semillas por sitio y 15 días después de la germinación se realiza un raleo de la planta más débil o pequeña de cada sitio y dejando la que mas vigorosidad haya mostrado, la cantidad de semilla a comprar por parte del agricultor dependerá principalmente de la distancia de siembra y del sistema de tutorado vivo, muerto o mixto.

Siembra indirecta: Para realizar una siembra indirecta es necesario contar con almácigos o camas levantadas (figuras 8 y 9), que permitan poner a germinar las semillas de sacha inchi durante 14 días y luego ser llevadas a bolsas negras de 0.5 kilos llena con sustratos compuesto por un 50% de tierra negra, 20% de arena lavada y 30% de humus de lombriz o gallinaza, es muy importante estar seguros de

que este sustrato no cuenta con nematodos u hongos del suelo que pueden llegar a ser perjudiciales para las plantas. Este sistema de almácigos ofrece plantas más sanas y una menor mortalidad, debido a que el ataque de plagas y enfermedades es menor, y de encontrarse ataqués el control se podrá hacer de manera inmediata, constante y uniformemente. Sin embargo se recomienda realizar esta labor en sitios con una muy buena ventilación, que permita reducir la humedad relativa en el ambiente, lo que aumentaría la incidencia de enfermedades principalmente. Las plantas son llevadas a campo a los 60 días de germinadas donde terminaran su crecimiento e iniciaran su ciclo productivo (gráfica 2) durante los siguientes 10 años que dura su ciclo productivo.

Gráfica 2. Fenología de la planta de sacha inchi (Días)

![Gráfica de fenología](image)

Figura 8: sacha inchi para siembra indirecta Tomado de LARREA, Nelson Figura 9: sacha inchi en almácigos Tomado de LARREA LORA, Nelson

Densidad de siembra

La densidad de siembra que se implementara en un cultivo de sacha inchi varía dependiendo de factores como la precipitación de la zona, la humedad relativa, la radiación, la continuidad y velocidad en el viento, temperatura, topografía, fertilidad, etc. por lo cual el agricultor deberá conocer o buscar asesoría técnica, antes de iniciar la siembra. Generalmente la distancia utilizada por los productores de sacha inchi es de 3 m x 3 m en un sistema de monocultivo, lo que daría como resultado 1.111 plantas por hectárea. Sin embargo, con el fin de aprovechar al máximo el área y obtener mayor producción por hectárea, algunos agricultores han optado también por sembrar a 3 metros por 2.5 metros obteniendo 1.333 plantas por hectárea, lo que pone en riesgo no solamente la sanidad de la plantación, sino también la sostenibilidad ambiental y ecológica de la región.
Existe también la posibilidad de asociar el cultivo con plantas forrajeras y maderables que sirvan a su vez de tutores pero que pueden reducir el número de plantas de sacha inchi por hectárea inclusive hasta la mitad de las sembradas en monocultivo, todo depende del tipo de tutorado utilizado, si son solo vivos o mixtos con tutores muertos y la cantidad de tutores vivos que se piensan adecuar en el lote de utilizar este sistema mixto.26

Fertilización

La fertilización es una parte importante en el desarrollo de un cultivo, mas aun si lo que se busca es obtener plantas bien desarrolladas y vigorosas, para esto es necesario suplir las necesidades nutricionales de la planta desde el momento de su germinación, cuando la planta se encuentra en estado inicial, es decir, mientras que las plantas se encuentren en su etapa vegetativa, la aplicación de productos con mayores cantidades de nitrógeno, mientras que en su etapa reproductiva la fertilización debe enfocarse más a productos con un porcentaje mayor de fosforo y potasio principalmente, buscando así una mejor floración y llenado de fruto lo que a su vez generaría mejores producciones y rendimientos más elevados por hectárea. Es importante que la fertilización en la fase reproductiva de la planta no lleve altas cantidades de nitrógeno, ya que de ser así la planta podría dedicar toda su energía a formar follaje y reducir la floración o llenar deficientemente los frutos que al final es lo que se busca en este sistema productivo.28

Este cultivo de sacha inchi, requiere aplicaciones constantes de materia orgánica como gallinaza o humus, que le brinden nutrientes requeridos por las plantas y mejore la capacidad de mantener la humedad en el suelo durante más tiempo en las épocas de sequías, estos materiales orgánicos deben ser cuidadosamente adquiridos ya que lo que menos se busca es llevar problemas fitosanitarios a una plantación donde sus limitantes son patógenos provenientes del suelo.

Podas

Las podas se realizan para obtener plantas bien conformadas, vigorosas y fuertes, distribuyendo las ramas en el tutor se obtendrán buenas producciones. Mejoran la aireación y permiten un buen ingreso de los rayos solares a toda la planta, lo que reduciría la humedad relativa en el cultivo y por ende la incidencia de enfermedades. Las ramas y hojas obtenidas de las podas deben acomodarse sobre las calles como cochinón para abonar el suelo, mantener y mejorar el porcentaje de materia orgánica e impedir la proliferación de arvenses. Cualquier rama podada que presente síntomas de enfermedades debe ser eliminada del campo. Para la poda del sacha inchi se recomienda el uso de tijeras de mano, debidamente desinfectadas con soluciones de sulfato de cobre al 5% diluido en agua, a fin de evitar la transmisión de enfermedades.27

Tipos de Podas

Poda de Formación: con esta poda, como su nombre lo indica, se busca es darle forma a la planta de sacha inchi para que tenga una distribución pareja sobre el tutor o alambre que la sostiene. Esta labor debe ser realizada por personal calificado, ya que de la labor que se realice en las podas iniciales tomará forma la planta y de realizarla de forma indebida o eliminar las ramas productivas son pérdidas económicas por frutos que no se van a poder cosechar, la primera poda de formación debe realizarse a los 60 días de la siembra o al inicio de la formación de guías por parte de la planta, las guías generadas a una altura menor a 50cm deben ser eliminadas debido a que dificulta y retrasa la cosecha, así que lo ideal es formar una horqueta con solo dos ramas que serán guiadas sobre el tutor.

Poda de Producción: en esta poda lo que se busca es eliminar las ramas secas, enfermas e improductivas que no presenten frutos, para de esta forma obligar a la planta a dirigir toda su energía en el desarrollo de las ramas productivas. La poda de producción se debe realizar cuando se inicie la producción en la planta, y mantener una continuidad de podas cada 30 días.

Poda de brotes de los tutores vivos: en caso de utilizar tutores vivos, se les debe realizar podas continuamente de las hojas, ramas y nuevos brotes, con el fin de permitir el mayor porcentaje de luz solar a las plantas de sacha inchi, esta poda se recomienda hacer paralela a las del sacha inchi aunque dependiendo de la especie del tutor vivo puede recortarse o alargarse el tiempo para esta labor, ya que algunas especies son utilizadas como forrajes y son indispensables para la alimentación animal.

Asociación con otras especies

Debido a que el cultivo del sacha inchi no se recomienda sembrar en monocultivo, por su impacto sobre los ecosistemas y la alta incidencia de plagas y enfermedades que esto puede generar a la plantación, se ha buscado la posibilidad de asociarlo con una gran variedad de plantas, ya sean alimentarias, forrajeras, maderables y hasta frutales, que pueden ser utilizados como tutores vivos en el caso de los maderables y forrajeras, o intercalando los surcos del sacha inchi con especies alimentarias como gramíneas (maíz, sorgo, pastos, etc.), leguminosa, cítricos, frutales en general, etc. (figura 10). Es importante no asociar el sacha inchi con soianáceas como papa o tomate quienes también son susceptibles a nematodos y problemas fitosanitarios del suelo y pueden ser un atractivo, es por esto que se recomienda asociar principalmente con especies arbóreas como lo son la eritrina sp o el matarraton (Gliciridia sepium), e inclusive con especies más regionales como el yopo (Piptadenia pteroclada Benth) pueden llegar a ser una

excelente alternativa agroforestal para el piedemonte llanero en el departamento del Meta.

![Imagen de cultivo de sacha inchi](http://onewomanfarm.blogspot.com/2011/02/peru-and-sacha-inchi-farmers-2011.html)

Figura 10: sacha inchi asociado con yuca tomada de http://onewomanfarm.blogspot.com/2011/02/peru-and-sacha-inchi-farmers-2011.html

Manejo del cultivo

Como primera medida es de vital importancia realizar un análisis fitopatológico de los suelos y la vegetación que se encuentra en el lugar donde se va a establecer el cultivo de sacha inchi, así como de sus alrededores, con el fin de descartar problemas como nematodos o hongos del suelo que son las principales limitantes de este cultivo y ocasionando pobres rendimientos o una baja rentabilidad.

Plagas

Por ser una especie relativamente nueva en el ámbito agronómico, los insectos encontrados haciéndole daño a esta planta son muy pocos; en Colombia, donde los cultivos de sacha inchi son tan nuevos, los problemas de plagas con que se han encontrado los agricultores son muy pocos, apenas algunas larvas cortadoras de hojas de las familias Nymphalidae, Arctiidae y Tortricidae, pero su daño no es significativo como si lo es el ataque de hormiga de los géneros *atta* y *Acromyrmex*, son hormigas de color marrón rojizo que viven en colonias muy bien organizadas; donde las obreras cortan las hojas en forma de pequeñas porciones semicirculares para llevarlas al hormiguero donde se cultiva un hongo y del cual se alimentan todos los integrantes del hormiguero. Su mayor daño lo causa en el estado de plántula, ya que esta cuenta con muy poca área foliar que es utilizada por la hormiga y puede llegar a dañar o verse comprometido el tallo de la planta, causándole prácticamente la muerte a cada plántula atacada por lo que debe ser realizar control preferiblemente antes de la siembra.

El grillo del género *Gryllotalpa* conocido comúnmente como Grillo topo, también es una especie limitante en el cultivo de sacha inchi, ya que esta plaga se alimentan de las raíces y tallos, Las raíces pueden ser comidas en cualquier momento, y en las noches cálidas frecuentemente abandonan sus cuevas para alimentarse sobre la superficie. Los daños más serios causados por los grillos topo son en los estadíos iniciales de las plantas donde su sistema radicular es bastante pobre, por lo que cualquier daño a la raíz en este estado es un daño significativo que puede desde retrasar el crecimiento y desarrollo de la planta, hasta causar la muerte de la misma. El monitoreo es la práctica de control más efectiva ya que donde esta plaga abre un agujero va dejando montículos de suelo que nos podría indicar la presencia de esta plaga y realizar el control necesario para reducir al mínimo el daño causado por esta plaga.\(^32\)

Nematodos

El ataque de nematodos es el principal temor de muchos de los agricultores de sacha inchi, en especial de la especie *Meloidogyne spp* conocido como nematodo del nudo radical, este problema fitosanitario es la principal limitante en el cultivo de sacha inchi, causando daños en la raíz y facilitando la entrada de patógenos letales como *Fusarium sp*, lo que conlleva a una muerte lenta e inevitable de la planta atacada, por lo que realizar un proyecto de sacha inchi en suelos contaminados de nematodos es absolutamente inviable por lo que es un factor vital para tener en cuenta si se piensa en la posibilidad de sembrar sacha inchi en el piedemonte llanero del departamento del Meta, ya que según registros del ICA se han encontrado pequeños focos, principalmente en la zona del ariari donde la trasferencia de materiales de propagación en plátano, sin las labores de desinfección correspondientes han ayudado a que este problema se esté expandiendo.\(^33\)

La mejor forma de manejar este problema es evitando la siembra en zonas contaminadas o manejando materiales resistentes a nematodos, ya que el control químico de este problema es con productos de un nivel toxicológico muy alto y residuales nada recomendables para un cultivo ecológico como el que se busca con el sacha inchi.

Enfermedades

El cultivo de Sacha inchi es afectado por enfermedades causadas principalmente por hongos, las que alteran las funciones fisiológicas normales de la planta.\(^19\) Son áreas de tejido necrótico de forma, color y tamaño variado, se presentan generalmente en hojas y son originadas principalmente por los hongos *Rhizoctonia sp*, *Aureobasidium sp* y *Cladosporium sp*. Pero sin mayor importancia por pérdidas

significativas o de importancia económica para el cultivo como si ocurre con fusarium sp, donde es casi inevitable la muerte de la planta infectada por este hongo, fusarium sp por ser un hongo del suelo se encuentra casi siempre en zonas con problemas de nematodos, donde aprovecha el daño causado en las raíces por estos para ingresar al sistema radicular y causar una pudrición en los haces vasculares de la planta marchitándola y llevándola lentamente a su muerte.

Figura 11: raíz atacada por complejo fusarium sp y Meloidogyne spp
Tomada de http://es.scribd.com/doc/30650679/Analisis-de-Plagas-y-Enfermedades-de-Sacha-Inchi-Amazonas

Arvenses

La mayor limpieza de arvenses se debe realizar antes de la siembra, aunque lo ideal sería removerlas de forma manual para evitar daños ambientales, la mayoría de agricultores optan por una quema física o química, esta última se realiza principalmente con glifosato o cualquier herbicida de contacto. Ya cuando el cultivo se encuentra establecido, se recomienda que esta labor se realice con machete o guadaña para evitar quemar las plantas con el herbicida y teniendo muy en cuenta no causarle algún tipo daño mecánico a la planta.

2.6 COSECHA

La cosecha inicia entre los 6.5 y 8 meses después del trasplante si fue siembra directa o de 8 a 10 meses si la siembra fue directa, se realiza manualmente, recogiendo sólo las cápsulas que se encuentran secas, de color marrón y que aún permanecen en la planta. Una vez el cultivo inicia su producción esta se mantiene constante por lo que esta labor se debe realizar cada 15 - 30 días, dependiendo la continuidad con que esté produciendo y evitando tener perdidas por capsulas caídas. Los mayores rendimiento se encuentran entre los meses de alta pluviosidad, mientras que en los meses de sequía la producción puede reducirse casi en un 50%. Las producciones en el primer año están estimadas en un promedio de 1000 kilos por hectárea, pero se han encontrado plantaciones en Perú

donde se han obtenido 2000 kilos en el primer año por hectárea o como ha ocurrido en el departamento de Antioquia, donde en sus inicios el promedio no superaba los 800 kilos/ha en su primer año de producción. Esta producción se incrementa paulatinamente a 2.100 kilos/ha en su segundo año y 3500 kilos/ha al tercer, manteniendo estos promedios durante los 6 años siguientes.35

2.7 POSCOSECHA

Una vez realizada la cosecha, las cápsulas son transportadas para su secado y trilla, puede efectuarse en forma natural exponiendo las capsulas a la radiación solar, utilizando eras de cemento donde se extienden las cápsulas hasta reducir la humedad de la semilla al 15%. El secado efectuado a través del calor artificial, proporcionado por plantas secadoras que funcionan a base de energía solar, leña, petróleo u otra fuente de energía, es poco recomendado ya que puede llegar a calentar demasiado la capsula y alterar la calidad del aceite de sacha inchi y sólo se utiliza cuando se cultivan grandes extensiones para mejorar su eficiencia.

Extracción de la semilla

Al secarse, gran parte de las cápsulas o en algunos casos la totalidad de esta, deja al descubierro las semillas por ser un fruto de carácter dehiscente, por lo que era posible realizar la extracción de la semilla de forma manual. Aunque en la actualidad existen equipos capaces de separar la capsula de las semillas (figuras 12 y 13), donde se obtiene aproximadamente un 55% de semilla seca y un 45% de restos de la capsula36. Una vez obtenida la semilla es almacenada en costales de 50 kilos, en un ambiente totalmente seco, fresco y sin mezclar cosechas antiguas con las nuevas.37 En las grandes empresas e industrias extractoras de aceites, ya cuentan inclusive con equipos especializados capaces de separar la almendra de la cascara obteniendo un mayor porcentaje de aceite extraído y subproductos mas puros.38

Extracción del aceite

El aceite de Sacha Inchi es un producto vegetal que al ser procesado mediante extracción en frío se obtiene un aceite de alta calidad, sin el uso de expulsores. Químicos como ocurre con la extracción de otras oleaginosas, este aceite requiere de un proceso de filtrado que permita eliminar impurezas y obtener un aceite de color claro y con un agradable sabor a nuez y sin perder los nutrientes ni los ácidos grasos que lo hacen tan especial.

La técnica utilizada para la extracción del aceite de sacha inchi, sin que pierda sus características físico-químicas y organolépticas, es llamada prensado en Frío. Es una técnica de extracción utilizada en aceites delicados, con el fin de mantener sus características, cuando el sabor o el matiz de sus propiedades son el componente clave de su producción, para lo cual se necesita tener un mayor cuidado durante el proceso de elaboración. El prensado en frío consiste en extraer el aceite de tal forma que no se superen los 120 grados F, de ahí su nombre. Con una prensa hidráulica se comprimida la almendra (figura 14) que se encuentra dentro de un cilindro que cuenta con orificios laterales como se observa en la figura 15, lo que permite que al ir siendo comprimida la almendra, expulse el aceite y sea colectado prácticamente puro.

Otra forma de obtener el aceite de la semilla de sacha inchi es mediante la extracción por solvente: este proceso se realiza con hexano, el cual elimina los constituyentes no oleosos, como la proteína y la fibra, apartando exclusivamente el aceite de esta. Prácticamente es el único método para conseguir una extracción casi completa del aceite, pero A pesar de que el método de extracción en frío no garantiza la extracción del ciento por ciento del aceite de las semillas, el nivel de pureza del aceite obtenido mediante este proceso es superior al que se logra mediante la extracción por solventes. Asimismo, la asociación de componentes químicos como el hexano puede impactar negativamente la característica orgánica.

39. HERNANDEZ, Jorge. La planta - el aceite. Sacha Inchi omega 9 oil - wira. Uhtco corporation. 2010, p 2 - 20
del aceite de sacha inchi.40

Figura 14: equipo extractor de aceite en frío
Tomada de http://www.caminodalagro.com/programas

Figura 15: aceite extraído de la almendra
tomada de: http://www.caminodalagro.com/programas

Tomando como referencia la tabla 5 se puede observar tres factores principales que hacen la diferencia entre ambos métodos de extracción y hacen que este aceite sea tan especial en la dieta de cualquier persona que lo consume. Como primera medida se observa que el nivel de inversión para poder contar con un equipamiento capaz de extraer el aceite sin que pierda sus características organolépticas y físico-químicas son bastante reducidas comparados con el método de extracción por solvente donde la infraestructura es mucho más especializada y tecnificada, mostrando así que cualquier agricultor con un poco más de inversión puede procesar su producción. Como segunda medida la complejidad y riesgo de la labor es mucho menor y no requiere personal altamente capacitado para operar los equipos correctamente en la extracción mecánica que en la de solvente, brindando así la posibilidad de emplear personal simple sin el riesgo de causar pérdidas significativas. Y por último la calidad obtenida de cada método: ya que como se conoce, el aceite de sacha inchi es extraído mediante una compresión mecánica causando la expulsión del aceite, este se obtiene se podría decir que puro y de alta calidad, pero dejando un porcentaje de este aceite en la torta que por medio de esta técnica es prácticamente imposible obtener, mientras que utilizando solventes para extraer el aceite se podría obtener casi la totalidad del aceite que se encuentra en la almendra pero de pobre calidad por la pérdida de sus características lo que lo hace poco deseable en el mercado.40

Tabla 5. Comparación del método de extracción mecánica utilizada en el sacha inchi y el método de extracción con solvente.

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>EXTRACCIÓN MECÁNICA</th>
<th>EXTRACCIÓN POR SOLVENTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel de inversión</td>
<td>reducido</td>
<td>Alto</td>
</tr>
<tr>
<td>Tamaño</td>
<td>alto</td>
<td>Alto</td>
</tr>
<tr>
<td>Control de proceso</td>
<td>sencillo</td>
<td>Complejo</td>
</tr>
<tr>
<td>Riesgo de seguridad del proceso</td>
<td>Simple</td>
<td>Complejo</td>
</tr>
<tr>
<td>Calificación de mano de obra</td>
<td>media</td>
<td>Especializada</td>
</tr>
<tr>
<td>Extracción de aceite</td>
<td>incompleta</td>
<td>Completa</td>
</tr>
<tr>
<td>Consumo de energía eléctrica</td>
<td>alto</td>
<td>Medio</td>
</tr>
<tr>
<td>Costos de mantenimiento</td>
<td>medio</td>
<td>Medio</td>
</tr>
<tr>
<td>Pureza del aceite</td>
<td>alto</td>
<td>Medio</td>
</tr>
</tbody>
</table>

Fuente: Gloria Pascual Chugman, Unalm

2.8 PRODUCTOS Y SUBPRODUCTOS DE LA SEMILLA DE SACHA INCHI *(plukenetia volubilis)*

Aunque el principal derivado de la semilla de sacha inchi es su aceite. También existen otros productos que se obtienen igualmente de la semilla, algunos preparados de forma artesanal como son el maní de sacha inchi, la semilla tostada, la mantequilla producida para autoconsumo, turrón de sacha inchi, tamal de sacha inchi, ingrediente de diversos platos típicos como inchi cucho (ají con maní inca), lechona api (mazamorra de plátano con maní inca), inchi capi (sopa de gallina o de res con maní inca) entre muchos otros. Así como los preparados industrialmente que son las harinas y lácteos con elevado contenido de proteínas, galletas, tortas y en la industria cosmetológica.

Se cree que a medida que las producciones a nivel mundial de sacha inchi aumente, de igual forma lo harán sus subproductos, encontrando una gran variedad elementos nuevos y saludables, tanto para el consumo humano como animal, entre los que muy posiblemente se observarán cereales o concentrados con un elevado nivel en proteínas, suplementos en la alimentación de aves de corral, así como mezclas nutritivas de sacha inchi con maíz amarillo duro, arroz, plátano, yuca, panes, galletas, leche y derivados lácteos, entre otros.

2.9. MERCADO DEL SACHA INCHI

Demanda mundial

En el mundo, la tendencia de consumo de aceites vegetales se ha incrementado en los últimos años. Para el año 2008, las importaciones mundiales alcanzaron la cifra de 924 millones de dólares, lo que representó un crecimiento de 73% respecto del año 2003. Los principales importadores representan 40% del total de las importaciones mundiales y entre ellos figura Estados Unidos, país que en el año 2006 llegaba a 12% de estas importaciones como lo muestran las gráficas 3 y 4.

La tendencia al consumo de aceites vegetales se ha incrementado en todo el mundo en los últimos años, especialmente los de canola y soya. Esta orientación
hacia productos que poseen características nutricionales además de buen sabor resulta una ventaja para el aceite de sacha inchi.

Grafica 3. Principales importadores de aceites Vegetales 2003-2008 (dólares)

![Grafica 3](image)

Fuente: Asociación de Exportadores del Perú (ÁDEX).

Grafica 4. Principales países importadores de aceites y grasas funcionales, 2006

![Grafica 4](image)

Fuente: Asociación de Exportadores del Perú (ÁDEX).

Entre los principales países importadores de aceites que tienen características y/o usos similares al aceite de sacha inchi, se destaca nuevamente Estados Unidos como el país con mayor valor importado para esta clase de aceites, seguido de
Francia, Japón y Alemania. 42

Tabla 6. Importaciones de aceites por país 2006 (Ton/año)

<table>
<thead>
<tr>
<th>importadores</th>
<th>De pescado</th>
<th>Oliva virgen</th>
<th>soya</th>
<th>canola</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE.UU</td>
<td>45.127</td>
<td>858.318</td>
<td>7.364</td>
<td>308.133</td>
<td>1.218.942 Ton</td>
</tr>
<tr>
<td>FRANCIA</td>
<td>26.665</td>
<td>362.450</td>
<td>61.011</td>
<td>115.392</td>
<td>565.518 Ton</td>
</tr>
<tr>
<td>JAPÓN</td>
<td>45.389</td>
<td>157.604</td>
<td>49.492</td>
<td>46.331</td>
<td>298.816 Ton</td>
</tr>
<tr>
<td>ALEMANIA</td>
<td>18.792</td>
<td>201.343</td>
<td>62.250</td>
<td>314.850</td>
<td>597.235 Ton</td>
</tr>
</tbody>
</table>

Fuente: Food and Agriculture Organization (FAO).

Los altos volúmenes de importación de aceite de oliva en Estados Unidos, frente a los otros aceites, se deben principalmente al interés del consumidor estadounidense por los alimentos de origen étnico y por aquellos asociados con la dieta y la gastronomía del Mediterráneo. Estados Unidos prefiere el consumo de aceites vegetales con bajo contenido de ácidos grasos saturados debido a que se relaciona los productos naturales con la búsqueda de una vida saludable. Entre los aceites más consumidos destacan los de soya, maíz y canola como lo muestra la gráfica 5. 42

41
Exportaciones en Perú

Como principal exportador de sacha inchi encontramos que del año 2004 al año 2010 las exportaciones peruanas de este producto se han incrementado en más de 20.000%, convirtiéndose desde el año 2005 en el producto de mayor demanda representando en promedio el 98% de las exportaciones realizadas. De continuar esta tendencia, la producción interna de semilla de sacha inchi será insuficiente para abastecer los requerimientos del mercado externo. La principal explicación de este crecimiento es el mayor conocimiento que existe en el mundo sobre las propiedades del aceite de sacha inchi para la alimentación.43

Sin embargo, la mayor expectativa que tiene este mercado actualmente, está en la apertura del mercado europeo, debido que este 2012 se cumple ya 5 años de espera de la aprobación del Comité del Novel Food (organismo de regulación de la Unión Europea), que actualmente impide el ingreso del sacha inchi para uso alimenticio a dicho mercado, lo que ha retrasado la entrada plena de este producto al mercado europeo causando pérdida potenciales a la economía peruana principalmente. Sin embargo la firma de los tratados de libre comercio con los países asiáticos, ha incrementado la demanda, en especial China, por lo que se espera aumentar el área sembrada para cumplir con la exigencia, cada vez mayor, del mercado interno e internacional.

Tabla 7. Evolución de las exportaciones peruanas de aceite de sacha inchi, 2004-2010

<table>
<thead>
<tr>
<th>Exportaciones</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>Crecimiento %</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOB (dólares)</td>
<td>3.292</td>
<td>25.007</td>
<td>105.081</td>
<td>391.387</td>
<td>736.438</td>
<td>970.166</td>
<td>1.338.160</td>
<td></td>
</tr>
<tr>
<td>Variación %</td>
<td>660</td>
<td>320</td>
<td>272</td>
<td>88</td>
<td>59</td>
<td>38</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Peso neto (Ton)</td>
<td>414</td>
<td>2.638</td>
<td>9.719</td>
<td>30.848</td>
<td>50.584</td>
<td>66.908</td>
<td>83.635</td>
<td></td>
</tr>
<tr>
<td>Variación %</td>
<td>537</td>
<td>268</td>
<td>217</td>
<td>64</td>
<td>53</td>
<td>25</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>Valor prom (Kg)</td>
<td>7.94</td>
<td>9.48</td>
<td>10.81</td>
<td>12.69</td>
<td>14.53</td>
<td>16.08</td>
<td>17.42</td>
<td></td>
</tr>
<tr>
<td>Variación %</td>
<td>19</td>
<td>14</td>
<td>17</td>
<td>14</td>
<td>11</td>
<td>8</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Surnal y agencia agraria de noticias, Perú

El número de países de destino también se ha incrementado, pues se pasó de 414 toneladas de exportación dirigidas únicamente a Canadá en el año 2004 a 30.848 toneladas dirigidas a 17 países de destino en el año 2007 como Francia, Japón, corea, México, España, china, entre otros como muestra la tabla 7. Estados Unidos a pesar de ser 2007 su primer año importando este aceite, se convirtió en el país más demandante superando inclusive a Canadá que cuenta con mucha mayor trayectoria en el consumo de sacha inchi como se observa en la tabla 8.44

Tabla 8. Destino de las exportaciones peruanas de aceite de sacha inchi, 2007

<table>
<thead>
<tr>
<th>País de destino</th>
<th>Valor FOB (dólares)</th>
<th>Participación (%)</th>
<th>Peso neto (Kg)</th>
<th>Precio % (dólares/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE.UU.</td>
<td>231.629</td>
<td>59.2</td>
<td>14.248</td>
<td>16.3</td>
</tr>
<tr>
<td>CANADA</td>
<td>31.339</td>
<td>8.0</td>
<td>3.467</td>
<td>9.0</td>
</tr>
<tr>
<td>FRANCIA</td>
<td>26.538</td>
<td>6.8</td>
<td>2.688</td>
<td>9.9</td>
</tr>
<tr>
<td>JAPON</td>
<td>23.052</td>
<td>5.9</td>
<td>2.222</td>
<td>10.4</td>
</tr>
<tr>
<td>COREA</td>
<td>21.060</td>
<td>5.4</td>
<td>3.667</td>
<td>5.7</td>
</tr>
<tr>
<td>MÉXICO</td>
<td>17.700</td>
<td>4.5</td>
<td>1.300</td>
<td>13.6</td>
</tr>
<tr>
<td>ESPAÑA</td>
<td>13.756</td>
<td>3.5</td>
<td>685</td>
<td>20.1</td>
</tr>
<tr>
<td>CHINA</td>
<td>11.794</td>
<td>3.0</td>
<td>1.090</td>
<td>10.8</td>
</tr>
<tr>
<td>ALEMANIA</td>
<td>3.023</td>
<td>0.8</td>
<td>251</td>
<td>12.0</td>
</tr>
<tr>
<td>ITALIA</td>
<td>2.784</td>
<td>0.7</td>
<td>288</td>
<td>9.7</td>
</tr>
<tr>
<td>AUSTRIA</td>
<td>2.603</td>
<td>0.7</td>
<td>190</td>
<td>13.7</td>
</tr>
<tr>
<td>ARUBA</td>
<td>2.546</td>
<td>0.7</td>
<td>312</td>
<td>8.2</td>
</tr>
<tr>
<td>PAÍSES BAJO</td>
<td>1.581</td>
<td>0.4</td>
<td>187</td>
<td>8.5</td>
</tr>
<tr>
<td>ANTILLAS HOL</td>
<td>1.083</td>
<td>0.3</td>
<td>102</td>
<td>10.6</td>
</tr>
<tr>
<td>SUIZA</td>
<td>748</td>
<td>0.2</td>
<td>140</td>
<td>5.3</td>
</tr>
<tr>
<td>REP. CHECA</td>
<td>100</td>
<td>0.0</td>
<td>10</td>
<td>10.0</td>
</tr>
<tr>
<td>NVA ZELANDA</td>
<td>21</td>
<td>0.0</td>
<td>1</td>
<td>21.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>391.357</td>
<td>100.0</td>
<td>30.848</td>
<td>127</td>
</tr>
</tbody>
</table>

Fuente: Sunat.

Exportaciones mundiales

Países que exportan aceites funcionales y que podrían ser potenciales competidores

Grafica 6. Principales países exportadores de aceites funcionales

Fuente: Asociación de Exportadores (ÁDEX).
Se observa en la grafica 6, que Estados Unidos e Italia son los mayores exportadores, aunque no producen aceite de sacha inchi ni otro producto con similares propiedades, se ubican como los principales participantes en este segmento de aceites funcionales debido a su producción de aceites de canola y soya.⁴⁵

IMPORTACIONES Y EXPORTACIONES DE SACHA INCHI (*plukenetia volubilis*) EN COLOMBIA

Para el año 2009, Colombia pasa a liderar el listado de países importadores de subproductos del sacha inchi, llegando a alcanzar el 28% de la producción Peruana en el año 2010, y pasando así a ser el país que más productos del sacha inchi ha importado en la historia productiva de esta especie, seguido de Japón quien, junto a Colombia, son los que más han aumentado sus importaciones. Mientras que EE.UU. mantiene su promedio de los últimos 5 años.⁴⁵

Colombia por ser un país para el que es nuevo este cultivo, no cuenta con exportaciones ya que aun se encuentra en una etapa de desarrollo, establecimiento y adaptación de esta especie, por tal razón la poca producción de sacha inchi producida en el país, se destina para el consumo interno, principalmente como aceite elaborado y empacado en gran medida de forma artesanal.

Tabla 9. Cultivo de sacha inchi (*Plukenetia volubilis*) en Colombia

<table>
<thead>
<tr>
<th>Año</th>
<th>Departamento</th>
<th>Área</th>
<th>Producción (Ton)</th>
<th>Rendimiento (Ton/ha)</th>
<th>Participación producción nacional</th>
<th>Participación área cos. nacional</th>
<th>Variación área</th>
<th>Variación producción</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Amazonas</td>
<td>1</td>
<td>1</td>
<td>0.6</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>1</td>
<td>1</td>
<td>0.6</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>2008</td>
<td>Amazonas</td>
<td>1</td>
<td>1</td>
<td>0.6</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>1</td>
<td>1</td>
<td>0.6</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>2009</td>
<td>Putumayo</td>
<td>20</td>
<td>20</td>
<td>1.0</td>
<td>97.09%</td>
<td>95.24%</td>
<td>2000.0%</td>
<td>3333.3%</td>
</tr>
<tr>
<td></td>
<td>Amazonas</td>
<td>1</td>
<td>1</td>
<td>0.6</td>
<td>2.91%</td>
<td>4.76%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>21</td>
<td>21</td>
<td>1.0</td>
<td>100%</td>
<td>100%</td>
<td>2000.0%</td>
<td>3333.3%</td>
</tr>
<tr>
<td>2010</td>
<td>Putumayo</td>
<td>6</td>
<td>46</td>
<td>7.7</td>
<td>100%</td>
<td>100%</td>
<td>-71.4%</td>
<td>123.3%</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>6</td>
<td>46</td>
<td>7.7</td>
<td>100%</td>
<td>100%</td>
<td>-71.4%</td>
<td>123.3%</td>
</tr>
</tbody>
</table>

Observando la tabla 9, para el año 2007 se establece en el territorio colombiano la primera hectárea de sacha inchi registrada por el ministerio de agricultura manteniéndose según registros durante los 2 siguientes años en el departamento del Amazonas, acompañada a partir del año 2009 por lo que sería para la época, la mayor extensión de área sembrada de esta especie en el país con 20 hectáreas en el departamento de Putumayo, pasando para el año siguiente a tan solo 6 hectáreas en este departamento, pero mostrando rendimientos de casi 8 toneladas por hectárea, mostrando la evolución en tecnología y conocimiento del cultivo comparado con las 0.6 Ton/ha producidas en el Amazonas del año 2007 al 2009.\(^6\)

Actualmente y extraoficialmente se calcula que en Colombia se cuenta con aproximadamente 90 hectáreas, según fuentes contactadas en el departamento de Medellín y Putumayo, quienes confirmaron que el área sembrada actualmente solo en estos dos departamento no corresponde a lo censado por ministerio de agricultura, y que por el contrario para el año 2011 solo en el putumayo se encontraban establecidas 95 hectáreas, pero por diferentes factores como la fumigación aérea con glifosato para cultivos ilícitos y la falta de credibilidad de los productores redujeron esta área a casi la mitad.\(^6\)

Observando las graficas 8 y 9, se puede ver el crecimiento en produccion que ha tenido este cultivo en el país, a pesar de haber reducido el area cosechada, la produccion se sacha inchi se incremento por factores tecnologico y fisiologicos de la planta, que durante los tres primeros años tiene una produccion ascendente y estabilizada despues del tercer año que expresando su mejor potencial productivo. Por lo que es extraño tener producciones de 7.7 toneladas por hectarea para el año 2010 como lo muestra la grafica 8.

Aunque oficialmente no se ha publicado el area sembrada en el año 2011 por el ministerio de agricultura y desarrollo rural para la fecha de elaboracion de esta monografia, se sabe que en el occidente del departamento de Antioquia, mas exactamente en el municipio de Sopetran se han iniciado siembras de sacha inchi por parte de empresas especializadas en aceites para biocombustibles a partir de piñon e higerilla, pero que han encontrado en el sacha inchi una alternativa rentable y competitiva, capaz de igualar los rendimientos y utilidad generada por las especies usadas para producir biocombustibles anteriormente mencionadas.
PRESENTACIONES EN EL MERCADO DEL SACHA INCHI (*plukenetia volubilis*)

Las principales presentaciones en las que se puede encontrar productos derivados de sacha inchi son:

- principalmente el aceite extraído mecánicamente de la semilla (figura 17), y toda clase de derivados que se realizan con este como son: jabones (figura 19), cremas corporales, cosméticos, mantequillas, margarinas, Mayonesas, suplementos nutricionales, coadyudantes, concentrados y suplementos nutricionales entre otros

- harinas y todo tipo de productos que se puedan hacer con esta, obtenida de la torta, que es el restante de la almendra cuando ya se le ha sido extraído la mayor cantidad de aceite.

Figura 17: aceite de sacha inchi
Tomado de: http://naturalezaazul.redtienda.net/pro.php?id=151038

Figura 18: sacha inchi con queso
tomado de: http://www.natureperu.com/index.php

Figura 19: jabón de sacha inchi
Tomados de: http://www.natureperu.com/index.php?cPath=38&language=es

Figura 20: almendra de sacha inchi con Aji
3. ASPECTOS BIOFÍSICOS DEL PIEDEMONE LLANERO DEL DEPARTAMENTO DEL META

3.1 LOCALIZACIÓN

El Piedemonte Llanero es una subregión de Colombia, que se caracteriza por ser el límite entre la cordillera oriental y los Llanos Orientales (figura 21). Se encuentra ubicada en las estribaciones de la Cordillera Oriental y abarca parte de los departamentos de Boyacá, Casanare, Arauca y Meta. En el departamento del Meta, el piedemonte se extiende desde la Sierra de la Macarena hasta los límites con el Casanare y Cundinamarca, abarcando toda la parte norte del departamento del Meta limitando con los municipios de Medina, Quetame y Cáqueza (Cundinamarca), mientras que al oriente se encuentra limitando justo con los municipios de Villanueva (Casanare) y Puerto López (Meta), al Occidente con la región de Sumapaz y al Sur con los municipios de mapiripán y puerto Lleras.

![Figura 21: ubicación del piedemonte creada por Cesar Rangel](image)

3.2 FISIOGRAFÍA

El departamento del Meta se divide por tres grandes regiones fisiográficas, entre las que se encuentra la subregión del piedemonte llanero, Esta subregión que se encuentra conformada por 12 municipios (Acacias, Barranca de Upia, Castilla la Nueva, Cumural, El Calvario, Guamal, Restrepo, San Carlos Guaroa, San Juanito, San Luis de Cubarral, San Martín, y Villavicencio) comprende un ancho de 80 a 100 kilómetros paralelos a la cordillera oriental y posee un área de 412,365

(Citado el 17 de marzo de 2012)

hectáreas que equivalen al 24.39% del departamento del Meta, lo que la convierte, en una subregión de gran importancia agropecuaria, si se tiene en cuenta su ubicación en el departamento y sus paisajes característicos como abanicos aluviales, terrazas aluviales, vegas y vegones, mesas y mesones, situados en altitudes que varían entre 200 y 3.200 metros sobre el nivel del mar.

3.3. DESCRIPCIÓN

La selva húmeda tropical fue la cobertura original de la región donde actualmente se distribuye el piedemonte llanero. Con la explotación forestal y con la acelerada colonización al inicio de los años cincuenta, las selvas fueron transformadas en sabanas para las actividades agrícolas y pecuarias, base de la economía departamental. El crecimiento del área urbana generó el desarrollo de infraestructura, estimulando la valorización de las tierras y con ello la migración de personas de diferentes regiones del país, convirtiendo la región en el centro de mercado agropecuario de Colombia. En la actualidad en el piedemonte llanero existen relictos de bosque dentro de los que se encuentran los bosques de terrazas y de altillanuras intervenidos, que poseen una composición florística y una fisonomía similar a los bosques de galería de los Llanos Orientales, pero con características de vegetación de transición entre el bosque de la Cordillera Oriental y el de la sabana.

3.4. CLIMA

El departamento del Meta cuenta con un régimen pluviométrico monomodal, es decir, que se presenta un periodo de intensas lluvias y otro de escasas precipitaciones (gráfica 10), siendo el piedemonte llanero la subregión que más precipitaciones recibe al año, alcanzando promedio anual de 2600 mm distribuidos básicamente entre los meses de abril y octubre en donde junio y julio son los meses más lluviosos, mientras que por el contrario entre los meses de noviembre y marzo cuenta con un período de sequía, encontrando el menor volumen de agua por precipitación en los meses de noviembre, diciembre y enero. Posee una humedad relativa que puede oscilar entre el 65% y el 90%, la temperatura promedio de 27°C entre enero y marzo y de 26°C entre abril y diciembre.

3.5. SUELOS

El Piedemonte llanero está conformado básicamente por dos sistemas de suelos, el primero es el de la vertiente oriental de la cordillera oriental y el segundo denominado llanura oriental. En la primera se dan fuertes procesos de erosión, sedimentación y escurrimiento superficial, con una dinámica bastante compleja, mientras que las llanuras orientales están conformadas básicamente por geoformas de escudos guayanés, altillanura y plataforma del terciario. La vertiente de la Cordillera Oriental está constituida por afloramientos rocosos que muestran que el sustrato geológico de los suelos estudiados está estrechamente relacionados con la historia geológica de la Cordillera Oriental por los que su composición litológica es muy variada y comprende: areniscas, lutitas, pizarras, arcillas rojizas y materiales aluviales recientes. Sus suelos van desde los suelos fértiles bien drenados, con poco riesgo de inundación y planos, hasta los escarpados fuertemente erosionados, con formación rocosa y pantanosa.51

La condición diferente de los suelos del Piedemonte, unido a la falta de conocimiento de los pobladores llegados en las migraciones del presente siglo han desmejorado y hasta destruido las características de este importante recurso debido a su uso inadecuado, principalmente en actividades agrícolas y pecuarias.

3.6. RECURSOS HIDRICOS

La ubicación geográfica, la variada topografía y el régimen climático determinan que el Piedemonte llanero posee una de las mayores ofertas hídricas de país y del mundo, contrastando con una densidad poblacional baja y un bajo promedio de actividades económicas e industriales. Los ecosistemas orinoquenses se caracterizan por su doble función de captar y regular el agua. En los páramos del sumapaz y en la región del cucuy nacen ríos que vierten la región orinoquense, y por ende, al Piedemonte llanero. La regulación la lleva a cabo la selva húmeda tropical y los cordones del bosque de Galería.

El Piedemonte llanero presenta una variación de escorrentía decreciente hacia la zona baja, debido a la lluvia promedio con la que cuenta de entre 2.500 y 4.500 mm anuales. Alrededor del balance de las aguas recibidas, producidas y entregadas se encuentra que el Piedemonte llanero recibe el promedio de 1.211 m³/seg. De las cuencas altas de Boyacá y Cundinamarca, 300 m³ de la cuenca alta del río Arauca y 4.692 m³ de la cuenca alta venezolana del Orinoco.

El agua en el piedemonte llanero del departamento del Meta tiene básicamente un uso doméstico, urbano, industrial, y agrícola; que comparándolo con el total nacional, se encuentra que los usos urbanos e industriales son menores debido a su baja densidad poblacional, mientras que el uso agrícola cuenta con una participación que llega al 10% del uso total de todo el país. Pero aunque el abundante agua con la que cuenta la Orinoquía y el piedemonte se utiliza poco en las actividades de su población, si se encuentra un alto índice de contaminación de la misma, siendo los principales factores contaminantes las aguas residuales urbanas, los productos agroquímicos y la acelerada sedimentación de las laderas que arrojan enormes volúmenes de sedimento a las aguas.

3.7.APTITUD DE LOS SUELOS PARA LA AGRICULTURA Y LA GANADERIA

Los suelos del piedemonte se dividen por zonas o paisajes los cuales son:

Planicie aluvial de desborde y plano marginal

Comprende suelos recientes, desarrollados a partir de sedimentos jóvenes arrastrados de la cordillera oriental y depositada por los ríos Humadea, Guamal, Orotoy, Guayuriba, Ocoa, Y Humea. En esta posición se encuentran unidades fisiográficamente más pequeñas como orillares, meandros pequeños, bajos y planos aluviales.
En los orillares, meandros y bacines el uso agropecuario está restringido por estar sometidas estas áreas a encharcamientos e inundaciones prolongadas. El plano aluvial de desborde y el plano marginal se utilizan en la agricultura y ganadería, ya que poseen los mejores suelos cuya productividad está determinada por las propiedades morfológicas, físicas, químicas, mineralógicas, y biológicas.52

Terrazas

Terrazas bajas

Presenta un relieve plano con pendiente dominante menor de 3% en ella, se encuentran tanto suelos bien drenados como pobremente drenados, las características físicas, químicas y morfológicas, son aceptables. La fertilidad de estos suelos es de baja a muy baja, la reacción de acidez es fuerte y cuenta con un alto el contenido de aluminio intercambiable. Estas condiciones hacen que la mayor parte de los suelos se dedique a ganadería muy extensiva con pastos naturales, susceptibles a mejorarse mediante fertilización y utilización de variedades resistentes al alto contenido de aluminio y la baja fertilidad.52

Terraza alta

Ocupan áreas de relieve plano a ligeramente inclinado, que cuentan con texturas que van desde medias a finas y poseen una buena permeabilidad exceptuando las zonas de depresión, las características físicas de la mayoría de sus suelos son buenas, mientras que sus propiedades químicas son deficientes, así como su nivel de fertilidad y la saturación de bases; se encuentran trazas o ausencia de calcio, magnesio y potasio intercambiable, el fósforo aprovechable es muy poco y la saturación de aluminio de cambio muy alto. El tipo de arcilla que se encuentra es la caolinita y hay poca cantidad de materiales intemperizados.52

Bajo estas condiciones de fertilidad prospera una ganadería extensiva con pastos naturales o mejorados donde se destacan especialmente los pastos \textit{Brachiaria}, los cuales están desplazando a los pastos nativos por su mejor adaptabilidad y mayor contenido nutritivo, pero en las zonas próximas a la Cordillera, especialmente en el abanico inferior se encuentran cultivos de café típico o común y caturra, algunas veces intercaladas con cacao y con aplicaciones altas de fertilizantes, y aunque estos suelos son muy similares a los descritos en las terrazas bajas, sus características físicas, químicas, y morfológicas, ofrecen dificultad por su posición elevada para la implementación de riego, impedido la siembra de cultivos semestrales, anuales o perennes tales como cítricos, mangos, caña de azúcar, piña y marañón, aunque mediante la aplicación de prácticas agronómicas adecuadas e investigación, se puede manejar la posibilidad de llegar a establecerlos.52

52 SUBREGIONES DE COLOMBIA. Bogotá D.C. 2011. disponible en: http://unidos-por-colombia.wikispaces.com/subregiones+de+la+orinoquia. (Citado el 17 de marzo de 2012)
Valles

Generalmente ocupan zonas de forma alargada en relieve plano a ligeramente plano, de amplitud variada; su material parental es de origen aluvial y coluvio aluvial no recomendables para actividades agropecuarias. Se encuentra a alturas que fluctúan entre 250 y 600 metros sobre el nivel del mar y corresponden a clima cálido húmedo. Los suelos son superficiales, muy superficiales y profundos, de textura moderadamente fina a gruesas. Algunos presentan dentro del perfil abundantes cantos rodados del tamaño del cascajo y de gravilla. El drenaje varía de pobre a bien drenados. La fertilidad es baja y la reacción ácida a muy ácida.

Vertiente

Esta posición comprende los suelos de la parte de la cordillera oriental, correspondientes a los municipios de Guamal, Acacias, Villavicencio, Calvario, Restrepo y Cumaral, está formado por materiales coluviales, principalmente areniscas en matriz arcillosa. Estos suelos se encuentran entre 500 y 1.300 metros de altitud y posee un clima cálido húmedo. La profundidad efectiva varía de superficial a profunda y sus características físicas en general son buenas, aunque el nivel de fertilidad es bajo debido a su bajo porcentaje de materia orgánica y de elementos nutritivos para el desarrollo de las plantas, así como el alto contenido de aluminio, la marcada acidez y el poco contenido mineral intemerizables.\(^{53}\)

El relieve fuertemente inclinado con pequeñas áreas onduladas y el poco cuidado en el manejo de los potreros han producido procesos de erosión, principalmente en forma de pata de vaca. Los suelos son utilizados para ganadería intensiva con pastos mejorados que se adaptan muy bien a estas condiciones edafoclimáticas. Se encuentra a una altitud de 700 y 2.800 metros por lo que posee climas cálido húmedo, medio húmedo, y frío húmedo. Los materiales que han originado los suelos son muy diversos, encontrando arcilla rojiza, pizarras arcillosas, esquistos cloríticos y areniscas, con influencia de ceniza volcánica hacia la parte alta. En la parte correspondiente a clima cálido, el relieve es muy irregular y va de fuerte inclinado a escarpado. En pequeñas áreas de clima cálido, donde las condiciones de relieve lo permiten, se siembra plátano, frutales, y caña, en clima medio húmedo los cultivos, principalmente son de caña y yuca, el resto de área se encuentra en potrero con pasto natural.\(^{53}\)

3.8. CARACTERISTICAS AGROECOLÓGICAS DEL PIEDEMONT LLANERO

El piedemonte llanero desde clima cálido húmedo hasta el frío húmedo y muy húmedo; las precipitaciones oscilan entre 2.500 a 4.500 Mm. por año y la temperatura entre 10 a 27 grados centígrado, la humedad relativa es alta con promedios que superan el 75%. La temperatura media del piedemonte llanero en el departamento del Meta promedia los 24 grados centígrados, su humedad relativa media es del 85% con unas precipitaciones promedio de 2.800 mm por año, su sistema hidrográfico presenta grandes variaciones en caudal durante los periodos secos y lluviosos, llegando el caudal a su mínima expresión, mientras que en invierno aumenta desbordando su cauce, provocando inundaciones tanto en la zona urbana, como en el área rural donde las pérdidas agropecuarias siempre suelen ser las más perjudicadas.

3.9. IMPORTANCIA DEL PIEDEMONT LLANERO

La región del Piedemonte Llanero es de gran importancia económica, social, cultural y sobre todo agropecuaria debido a su localización, la cual abarca una extensión de 421.365 hectáreas en el departamento del Meta lo que permite tener una gran variación de clima; el cual va desde cálido húmedo a frío húmedo, con buen porcentaje de humedad lo que permite que su explotación agropecuaria sea favorable puesto que estos factores permiten el buen desarrollo y crecimiento de las plantas en los diferentes cultivos.

Además posee un buen sistema hidrográfico con grandes variaciones en caudal durante los periodos secos y lluviosos lo que permite otras explotaciones pecuarias como lo es el cultivo de peces, el cual genera grandes ingresos económicos para la región lo que conlleva al mejoramiento de la calidad de vida de cada uno de los habitantes del piedemonte llanero.

En consecuencia las clases de aptitud de usos y manejo del suelo con potencial agropecuario se concentra en el Piedemonte del departamento del Meta lo que es explicable por encontrarse en este departamento la mayor infraestructura y las mejores condiciones de fertilidad de los suelos lo que es de gran importancia para nosotros e indica que debemos ser consientes con el uso y manejo del suelo, y del medio ambiente. Por ello su utilización y explotación debe basarse siempre en los criterios de sostenibilidad y equidad pero sobre todo en su conservación.

3.10. ECONOMÍA DEL DEPARTAMENTO

La economía en el departamento, podría decirse, que es la más importante en la región de la Orinoquia, ya que su ciudad capital que es Villavicencio, es prácticamente paso obligatorio para cualquier persona que se dirija desde la capital de la república hacia los llanos orientales o la Orinoquia en general. El potencial agropecuario de este departamento está basado básicamente por tres factores importantes; la primera, que es suplir la demanda local, que puede derivarse en alimenticias para la industria interna del departamento; la segunda, abastecer las necesidades tanto alimentarias, industriales y comerciales de la capital de la república, donde se encuentra el mayor centro de acopio del país; y por último, las exportaciones, siendo el principal objetivo del gobierno departamental y nacional, promocionando capacitaciones y asesorías a los agricultores del departamento, con el fin de incrementar año a año las exportaciones de este departamento ya que para el año 2009 su participación no superaba el 0.1% de las exportaciones nacionales. Las mayores exportaciones para el año 2009 fueron carnes y despojos comestibles por un valor de US $283,8 millones, materias plásticas y manufacturas con US $261,5 millones y frutos comestibles, corteza de agros y melones" con US $224,5 millones, bananas o plátanos frescos tipo cavendish valery" (US $195,8 millones) como principales productos.56

La economía del departamento del Meta está basada en el sector agropecuario, siendo los cultivos de arroz, palma africana, cítricos, maíz, soya, plátano, caucho, caña de azúcar y yuca principalmente en la parte agrícola; mientras que la ganadería, porcicultura y piscicultura, son la representación primaria del sector pecuario abarcando principalmente la zona del piedemonte llanero. La explotación de hidrocarburos en el departamento ha sido un factor a tener en cuenta en la economía del departamento, ya que el importante incremento en la producción petrolera ha reducido los índices de desempleo en el departamento y ha dinamizado la economía por las regalías generadas e invertidas en infraestructura y vías. Los biocombustibles también han sido factor determinante en la economía del departamento del Meta, principalmente al sector agrícola, ya que el área sembrada con especies propicias para la elaboración de biocombustibles, ha aumentado considerablemente llegando así a superar las 160.000 hectáreas sembradas con estas especies, siendo la palma africana la de mayor área sembrada con más de 100.000 hectáreas para la elaboración de biocombustibles, seguido de soya con 25.000 y maíz con 17.000, estos últimos para la elaboración de alcoholes carburantes.

3.11. INFRAESTRUCTURA Y TRANSPORTE EN EL PIEDEMONT LLANERO

El departamento del Meta cuenta con una red vial de 3.167 km de carreteras, de los cuales 1.096 km corresponden a la der nacional y de los cuales cerca del 50% se encuentran pavimentadas y el otro 50% afirmado. Las carreteras pavimentadas conectan los corredores viales de Bogotá – Villavicencio, Villavicencio – Puerto López – puerto Gaitán, Villavicencio – Restrepo – Cumará – Paratebueno – Barranca de Upia – Villanueva – Yopal y Villavicencio – Acacias – Guamal – San Martín – Granada. En cuanto al trasporte fluvial, desde el año 2007 se iniciaron los trabajos para establecer el cauce y garantizar la navegabilidad del río Meta, en sus 830 km. Cuenta además con aeropuerto en la ciudad de Villavicencio, el cual maneja rutas para la gran mayoría de municipios del departamento y es el principal enlace entre el centro y norte del país con departamentos como el Vichada, Guanía, Vaupés, etc.

El departamento del Meta cuenta con el servicio de energía eléctrica en 20 municipios, suministrado por la electrificadora del Meta con una cobertura que supera el 90% en la zona urbana y cercana al 50% en el área rural, dentro de los cuales están los municipios del piedemonte, exceptuando el municipio de Barranca De Upia, donde el fluido electro es prestado por la empresa de energía de Boyacá. Todos los municipios pertenecientes al piedemonte llanero son municipios con un alto nivel de desarrollo, donde se puede contar con alimentación, hotelería y tecnología a disposición inmediata, como cualquier ciudad capital del país.

ANÁLISIS

Está claro que el sacha inchi tiene un inigualable potencial dentro de las semilla oleaginosas por el porcentaje de aceite tipo omega y proteínas que posee su semilla, se convierte en un producto muy favorable para la salud humana, pero que hasta ahora se está introduciendo en el mercado mundial de los aceites funcionales. El principal productor y pionero en la explotación de esta especie es Perú, su población ha consumido esta semilla en su dieta alimenticia durante décadas y a partir del año 2004 inicio la promoción y comercialización del aceite de esta semilla, mostrando al mundo las bondades y beneficios que este aceite le brinda, no solo a la salud humana, sino también a industrias como lo es la cosmetológica, concentrados animales, aseo personal, entre otras.

Aunque el sacha inchi es una especie nativa de la amazonía peruana, se ha encontrado una buena adaptabilidad a condiciones diferentes, como se ha observado en las plantaciones establecidas en los departamentos de Putumayo y Caquetá, o mejor aún los que se encuentran actualmente en el oriente Antioqueño, que son cultivos ubicados en laderas montañosas, que han mostrado buena adaptabilidad y rendimientos más que aceptables. En este orden de ideas se podría decir que la viabilidad productiva del sacha inchi en el piedemonte llanero del departamento del Meta es muy alta, debido a que las condiciones requeridas por esta especie para expresar su máximo potencial productivo son encontradas allí; condiciones como la humedad relativa de entre 75 y 80 % y la temperatura promedio de 26 grados centígrados son las condiciones casi habituales en el piedemonte, así como la disponibilidad continua de agua, suelos con buen contenido de materia orgánica y elementos nutricionales, de muy poco encharcamiento pero con muy buena retención de agua, hacen consolidar mas al sacha inchi como una alternativa productiva para esta subregión. Además de las condiciones favorables otorgadas por el piedemonte llanero, también podemos encontrar que la zona de piedemonte cuenta con una excelente malla vial, que le permite a agricultores e industriales un fácil acceso de insumos y equipos necesarios para la adecuación y mantenimiento de las plantaciones, lo que no genera gastos significativos en transporte y facilita adquirir la mano de obra requerida en el cultivo.

Tabla 10. Rentabilidad del cultivo para cuatro años de almendra negra de sacha inchi por hectárea.

<table>
<thead>
<tr>
<th></th>
<th>Año 1 (2011)</th>
<th>Año 2</th>
<th>Año 3</th>
<th>Año 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Producción</td>
<td>$4,800,000</td>
<td>$9,600,000</td>
<td>$14,400,000</td>
<td>$19,200,000</td>
</tr>
<tr>
<td>Gastos</td>
<td>$8,322,825</td>
<td>$3,466,325</td>
<td>$3,316,325</td>
<td>$3,316,325</td>
</tr>
<tr>
<td>Ganancias</td>
<td>-$3,522,825</td>
<td>$6,133,675</td>
<td>$11,083,675</td>
<td>$15,883,675</td>
</tr>
</tbody>
</table>
El sacha inchi es un cultivo que permite recuperar su inversión a partir del segundo año de producción, lo que no solo hace que sea un cultivo rentable, sino que también permite obtener una pronta ganancia que es lo que muchas veces detiene un proyecto productivo nuevo, por el riesgo y la incertidumbre de realizar una alta inversión que puede llegar a generar ganancias a los 4, 5, 6 y hasta más años, corriendo el riesgo de sufrir cualquier tipo de contratiempo que pueda llegar a retrasar o destruir por completo una plantación como es un ataque severo de plagas, enfermedades o factores externos como incendios entre otros. Como muestra la tabla 10 la rentabilidad del cultivo a partir del 4 año se podría decir que se estabiliza en máximo expresión productiva, que para la fecha de redacción de la presente monografía, podría estar dejando un ingreso mensual mayor a $1.300.000 pesos por hectárea de solo la venta de la almendra negra sin ningún proceso de extracción.

Por su cercanía con la capital del país se puede decir que la comercialización del sacha inchi, ya sea como semilla, almendra o aceite, estaría asegurada, ya que en Bogotá D.C. se encuentra el mayor y más importante centro de acopio del país, lo que facilita su venta. Existen empresas, como es el caso de Colombiana De Biocombustibles S.A. que se encuentran ubicados en el departamento de Antioquia y cuentan con una planta especializada para la extracción de este tipo de aceites funcionales, este tipo de empresas realizan la compra de la semilla puesta en la finca productora, así el agricultor no tiene que asumir ningún tipo de transporte ni traslado de esta, por lo que deben cumplir únicamente con suministrarle la semilla a la empresa compradora lo que es bastante beneficioso para el agricultor. La demanda de aceite de sacha inchi para consumo directo o como materia prima está en aumento en todo el mundo y cada vez son más las cantidades y los países demandantes de este producto, por eso Colombia debe aprovechar que cuenta con las condiciones ideales y requeridas por el cultivo en el piedemonte llanero para dejar de ser el principal importador, para pasar a ser productor y fuerte competencia en exportación de sacha inchi para Perú a nivel mundial.

Teniendo en cuenta que la subregión del piedemonte en el departamento del Meta maneja principalmente cultivos permanentes que asociándolos con el sacha inchi pueden ser perfectamente sostenibles y equilibrados socio-ambientalmente como lo es, si se establece una plantación intercalando surcos de sacha inchi con plátano, yuca o cítricos, manteniendo sus precauciones fitosanitarias y respetando las distancias de siembra de cada especie, ya sea sembrando una de estas especies cada dos surcos de sacha inchi o implementando, en el caso de los cítricos, el uso de estos como tutor vivo para sostener al sacha inchi, aumentando las distancias y no generar competencia nutricional ni sombrío a ninguno de los dos cultivos, de esta forma no se cae en el error de realizar siembras en un sistema de monocultivo, que no solo deteriora el medio ambiente, sino que también genera un desequilibrio de fauna y flora.

Además, el piedemonte llanero es una región donde la ganadería lechera y doble propósito aporta un porcentaje significativo de su economía, lo que nos muestra otra posibilidad comercial para el sacha inchi, ya que su alto contenido de aceite
(54%) y proteínas (34%) se convierte en un alimento que podría generar grandes beneficios económicos produciendo leches de mayor calidad y cantidad o le proporciona un aumento en el peso de los animales destinados para ceba, lo que al final le será representado al ganadero con mejores ingresos económicos. La producción promedio del sacha inchi son de 3 ton/hal año a partir del tercer año, de las cuales 1.6 toneladas son grasa pura y 1 tonelada de solo proteína; además, es importante recordar que la producción de sacha inchi es continua y permitiría una alimentación permanente a los animales. Aunque por otra parte y si no se quiere dedicar totalmente la producción de sacha inchi para alimentación animal y por el contrario se ve una alternativa más rentable en la extracción del aceite, estos animales pueden contar con la torta de sacha inchi, que a pesar de haber sido extraído su mayor cantidad de aceite, aun cuenta con un alto contenido de este, así como de proteínas necesarias para la ceba y producción de leche bovina.

Por lo anterior, con base en las revisiones realizadas y los análisis respectivos, se realizo una matriz DOFA, con el fin de identificar acciones viables que determinen la posibilidad del sacha inchi como una alternativa productiva para el piedemonte llanero en el departamento del Meta.

<table>
<thead>
<tr>
<th>DEBILIDADES</th>
<th>OPORTUNIDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poco conocimiento que se tiene en el departamento sobre la especie como una alternativa productiva.</td>
<td>Las condiciones agroecológicas y socioeconómicas favorables para establecer el cultivo</td>
</tr>
<tr>
<td>La falta de conocimiento en el comportamiento del sacha inchi en las condiciones del piedemonte llanero.</td>
<td>El cultivo de sacha inchi permite una fácil asociación con otras especies semestrales o de ciclo corto durante su establecimiento.</td>
</tr>
<tr>
<td>Desconocimiento de la incidencia de plagas y enfermedades que pueden llegar a ser limitantes en el cultivo.</td>
<td>Constante generación de empleo durante su establecimiento y su continua cosecha.</td>
</tr>
<tr>
<td>Poco apoyo económico por parte del estado a investigar e incentivar nuevas especies como alternativas productivas.</td>
<td>La creciente demanda de aceite y torta de sacha inchi a nivel nacional y mundial.</td>
</tr>
<tr>
<td>Ausencia de industria en la región capaz de procesar la semilla sin deteriorar su calidad o características organolépticas.</td>
<td>Las distintas industrias interesadas en implementar el aceite o la torta de sacha inchi como materia prima de sus productos.</td>
</tr>
<tr>
<td>FORTALEZAS</td>
<td>AMENAZAS</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Sus características físico-químicas y contenidos inigualables por las demás semillas productoras de aceites funcionales.</td>
<td>El apoyo del gobierno a especies con potencial para la elaboración de biocombustibles y no a incentivar la implementación de nuevas especies.</td>
</tr>
<tr>
<td>La cercanía con la capital de la república y la central de abastos más grande del país.</td>
<td>Poca industria en la región capaz de transformar y dar un valor agregado a esta especie sin deteriorar su calidad.</td>
</tr>
<tr>
<td>Poca área sembrada, Poca oferta y mucha demanda e importaciones nacionales de sacha inchi.</td>
<td>El adelanto investigativo y tecnológico con que cuenta Perú tras casi una década cultivando y procesando esta especie.</td>
</tr>
<tr>
<td>La producción constante de semilla por parte del sacha inchi, lo que genera constantes ingresos económicos al agricultor por más o menos 10 años.</td>
<td>Poca aceptación de por parte de la comunidad del piedemonte llanero debido al desconocimiento de el manejo, rentabilidad, beneficios, usos y demanda de la especie a nivel nacional y mundial.</td>
</tr>
<tr>
<td>La alta producción ganadera con que se cuenta en el departamento, permitiendo utilizar el sacha inchi como alimento o concentrado</td>
<td></td>
</tr>
</tbody>
</table>
CONCLUSIONES

- Realizando una comparación entre los requerimientos edafoclimáticos y agroambientales del sacha inchi *Plukenetia volubilis* L, frente a las ofertadas por el piedemonte llanero del departamento del Meta, se podría decir que la viabilidad de este proyecto productivo sobrepasa las exigencias mínimas para llegar a ser sostenible y rentable para un agricultor de esta subregión, a pesar de encontrar pequeños focos con problemas fitosanitarios de nematodos y fusarium, se podría decir que más del 70% de los suelos del piedemonte se encuentran aptos para realizar un proyecto productivo viable y rentable para los agricultores interesados en el departamento del Meta.

- La competitividad del proyecto dependerá del apoyo que el gobierno departamental y nacional brinde a la población interesada, así como del número de agricultores que se involucren en el proyecto y la cantidad de área e inversión que destinen a este cultivo, ya que de contar con grandes extensiones sembradas en sacha inchi *Plukenetia volubilis* L y con la instalación de una planta extractora para la región, este producto podría ser fácilmente comercializado en todo el país y ser exportado a los principales países demandantes en Europa, Asia y Norteamérica.

- El principal productor de sacha inchi que es Perú, cuenta con condiciones similares de trópico como nuestro país, por lo que su tecnología e implementación del cultivo fácilmente puede ser adaptadas a nuestras condiciones, lo que nos ahorraría años de investigación y adaptabilidad de materiales a lo que ofrece el piedemonte llanero en el departamento del Meta.

- Los departamentos que han visto en el sacha inchi una alternativa productiva son Amazonas, Putumayo, Caquetá y Medellín, este último liderando en desarrollo y extensión, atribuido a su accesibilidad y buen estado de su malla vial, aunque los entes gubernamentales como el ministerio de agricultura no muestre registros actualizados y reales de la situación de esta especie en el país.

- Las propiedades del sacha inchi son inmensas, no solo para la salud humana, sino también para la industria farmacéutica, cosmetológica y de alimentación animal, es un producto que se encuentra abriendo mercado en países importantes de Europa, Asia y Norteamérica, su demanda y los países demandantes aumenta año tras año, por lo que se convierte en un cultivo con buenas proyecciones a futuro.
REFERENCIAS LITERARIAS

• MANCO CÉSPEDES. Emma I. Antecedentes del sacha inchi. En: situación y avances del cultivo de sacha inchi en el Perú. San Martin. el porvenir. 2006. p. 5 - 7

• UNIDAD DE PLANEACIÓN Y DESARROLLO RURAL. informe final grupo cifras agropecuarias del Meta. secretaria de agricultura, ganadería y desarrollo rural. Villavicencio. 2011. p 8 - 234
